
Evaluating the Memory Performance
of a ccNUMA System

Uroš Prestor

September 5, 2001

Abstract

Scalable cache-coherent nonuniform memory access (ccNUMA) architectures are an important
design segment for high-performance scalable multiprocessor systems. In order to write applica-
tion programs that take advantage of such systems, or port application programs written for sym-
metric multiprocessor systems with uniform memory access times, it is important to understand
the impact of nonuniform memory access times and the associated ccNUMA cache coherence
protocols on aggregate application memory performance. This work presents a detailed memory
performance analysis of a particular ccNUMA system (the SGI Origin 2000). The thesis presents
a new memory profiling tool, called snperf, and a new set of microbenchmark codes, called
snbench, which make such a fine-grained memory performance analysis possible. The anal-
ysis was performed on a wide variety of Origin 2000 system configurations and demonstrates
that memory locality has a strong impact on application performance. More importantly, the re-
sults demonstrate a variety of second-order memory performance effects that are also substantial
performance influences. Even though the specific implementation target for this thesis was the
Origin 2000 architecture, the methods are applicable to other ccNUMA systems.

Contents

1 Introduction 7

2 Related Work 9
2.1 Microbenchmarks . 9
2.2 Performance Analysis Tools . 12

3 Background 15
3.1 Directory-Based Cache Coherence . 16

3.1.1 Protocol Operation . 17
3.1.2 Directory Organization . 18
3.1.3 Performance and Correctness Issues . 19

3.2 Origin 2000 Hardware Design . 21
3.2.1 Cache Coherence Protocol . 21
3.2.2 Node Board . 25
3.2.3 Interconnect Network . 29
3.2.4 Physical System Organization . 31

3.3 The Irix Operating System . 32
3.3.1 Hardware Graph . 32
3.3.2 Distributed Memory Management . 35

4 Architectural Evaluation of the Origin 2000 39
4.1 Protocol Transactions and Coherence States . 40

4.1.1 Composite Cache Coherence State . 40
4.1.2 Processor Actions and Protocol Requests 42
4.1.3 Directory Protocol Transactions . 43

4.2 Snbench Implementation Overview . 46
4.2.1 Measuring Memory Bandwidth . 47
4.2.2 Measuring Back-to-Back Latency . 48
4.2.3 Measuring Restart Latency . 50

4.3 Results . 53
4.3.1 Local Transactions . 54
4.3.2 Remote Transactions . 58
4.3.3 Interventions . 63
4.3.4 Invalidations . 68

2

5 The ccNUMA Memory Profiler 75
5.1 ccNUMA Performance Metrics . 75

5.1.1 Thread Metrics . 76
5.1.2 Node Metrics . 77
5.1.3 Network Metrics . 78

5.2 Origin Hardware Event Counters . 78
5.2.1 MIPS R10000 Performance Counters . 78
5.2.2 Hub Event Counters . 79
5.2.3 Router Histogram Counters . 81

5.3 Implementation . 81
5.3.1 Loadable Kernel Module . 82
5.3.2 System Activity Monitor . 87
5.3.3 Application Launcher . 91
5.3.4 Post-Mortem Analysis . 93

6 Examples 95
6.1 Memory and Link Utilization . 95
6.2 Side Effects of Prefetch Instructions . 96
6.3 Backoff Transactions . 98
6.4 SPLASH-2 FFT . 100

7 Conclusion 105

8 Acknowledgments 108

A 128-Processor System Results 109

3

List of Figures

2.1 The P 3 diagram for a 250 MHz Origin system . 10

3.1 Reducing protocol latency through forwarding . 20
3.2 Logical organization of the Origin 2000 system 22
3.3 Block diagram of the node board . 26
3.4 Block diagram of the Hub ASIC . 27
3.5 Origin 2000 topologies from 4 to 64 processors 30
3.6 128 processor Origin 2000 system topology . 30
3.7 Block diagram of the Router ASIC . 31
3.8 Physical configuration of a 32-processor Origin system 33
3.9 Physical configuration of a 128-processor Origin system 33
3.10 Irix memory locality management example . 38

4.1 Directory protocol transactions generated by a RDEX request 44
4.2 Kernels used in bandwidth experiments . 49
4.3 Kernels used in back-to-back latency experiments 49
4.4 Back-to-back and restart latencies on a R10K 250/250/4 system 52
4.5 Back-to-back and restart latencies on a R10K 195/130/4 system 52
4.6 Back-to-back and restart latencies on a R12K 300/200/8 system 52
4.7 Remote latency and bandwidth chart . 62
4.8 Message flow in unowned transactions . 62
4.9 Message flow in clean-exclusive transactions . 64
4.10 Dirty-exclusive transactions . 67
4.11 Message flow in invalidate experiments . 69
4.12 Invalidate latency chart . 71
4.13 Invalidate bandwidth chart . 72
4.14 Single sharer message flow . 73

5.1 Sample code fragment opening and initializing a Hub MD device 85
5.2 Sample code fragment opening and initializing a link device 86
5.3 Sample invocation of snsar . 88
5.4 Sample invocation of snrun . 91
5.5 Sample output from sninfo . 94

6.1 Memory utilization for 1- and 2-thread local reduction loop 96
6.2 A comparison of memory and link utilizations . 97

4

6.3 STREAM directory state breakdown . 98
6.4 FFT memory utilization profile on four nodes . 102
6.5 Unoptimized FFT matrix transpose without staggering 103
6.6 FFT matrix transpose with basic staggering . 103
6.7 FFT matrix transpose with optimized staggering 103

A.1 128-processor system remote latency and bandwidth chart 112
A.2 128-processor system intervention latency chart 112
A.3 128-processor system intervention bandwidth chart 113

5

List of Tables

3.1 Directory states in the Origin directory protocol 23

4.1 Snbench composite cache coherence states . 41
4.2 Processor actions and protocol requests . 42
4.3 Memory bandwidth experiments . 47
4.4 Back-to-back memory latency experiments . 48
4.5 Origin 2000 systems used in experiments . 54
4.6 Local results for a R10K 195/130/4 system . 55
4.7 Local results for a R10K 250/250/4 system . 57
4.8 Local results for a R12K 300/200/8 system . 57
4.9 Local results for a R12K 400/266/8 system . 57
4.10 A comparison of local results . 58
4.11 Remote results on a 64P Origin R12K 300/200/8 59
4.12 Remote results on a 128P Origin R12K 300/200/8 59
4.13 Remote results for a 64P R12K 300/200/8 system 61
4.14 Remote penalty and average router delays . 63
4.15 Remote latencies for clean-exclusive miss transactions 65
4.16 Remote latencies for clean-exclusive hit transactions 66
4.17 Remote latencies for dirty-exclusive transfer (DEXT) transactions 67
4.18 Remote latencies for dirty-exclusive downgrade (DEXD) transactions 68
4.19 Invalidate results for a 64P R12K 300/200/8 system 70
4.20 Remote latencies for single-sharer invalidations 74

5.1 R10000 performance counter events . 79
5.2 Hub Memory/Directory event counting modes . 80
5.3 Hub IO event counter definitions . 80
5.4 Router histogram counter registers . 81
5.5 Device files created by the LKM . 83
5.6 The ioctl commands defined by the LKM . 83
5.7 Device files in the extended LKM interface . 87
5.8 Options recognized by the system activity monitor 88

6.1 Aggregate memory bandwidth for backoff invalidates 99

A.1 Remote and intervention results for a 128P system 110

6

Chapter 1

Introduction

Among scalable multiprocessor systems, cache-coherent nonuniform memory access (ccNUMA)
designs are becoming increasingly popular. Compared to the traditional shared-bus (SMP) sys-
tems, they scale to much higher processor counts because their scalability is not limited by a single
shared resource. Compared to other scalable multiprocessor designs, they are much easier to pro-
gram. Like SMP systems, ccNUMA systems implement a globally coherent, shared address space
in hardware. The applications written for SMP systems do not require any changes in order to
execute on ccNUMA systems, an important consideration when existing codes are to be migrated
on new architectures.

However, scalability does not come without cost. While the applications written for a SMP
system run unmodified on a ccNUMA system, new factors need to be considered when tuning
application performance. Just like other scalable multiprocessors, ccNUMA designs replace one
shared resource (system bus) with a collection of distributed resources and any one of them can be-
come a performance bottleneck. More importantly, the basic memory performance characteristics
(latency and bandwidth) change depending on where the memory is allocated. On SMP systems,
the cost of a memory access is constant for all processors and all memory locations in the sys-
tem. On ccNUMA systems, the cost of a memory access depends on data placement and on the
type of the coherency transaction. Even in the most aggressive implementations of a ccNUMA
architecture, the cost of a remote memory access is more than twice the cost of a local memory
access.

On SMP systems, the performance analysis of parallel programs needs to address (among
other things) application cache behavior, load balancing, and the undesired artifacts of the cached,
shared address space (e.g., false sharing). On ccNUMA systems, performance analysis also needs
to address application memory behavior. While there are ccNUMA systems which offer operating
system support for achieving memory locality, the automated features are not always sufficient.
Applications typically need to carefuly tune their data placement in order to achieve good per-
formance on ccNUMA architectures. The research on performance analysis for uniprocessor and
SMP systems has produced a variety of methods and tools. When analyzing memory performance,
these tools may distinguish between a cache hit or a miss, and they may even be aware of the
cache hierarchy. However, very few tools focus on application memory behavior, especially in a
nonuniform memory access environment. Furthermore, even though the implementations of the
ccNUMA architecture have been available commercially for a number of years, there is no com-
prehensive study that evaluates the system performance in order to find the secondary effects of

7

ccNUMA architectures on application performance.
The SGI Origin 2000 system is an aggressive implementation of a ccNUMA architecture. The

system scales from two to 512 processors, the operating system includes extensive support for
NUMA programming and there is a rich set of tools for parallel program development. The system
includes hardware support for performance analysis: both the processor and various system ASICs
include a set of hardware event counters that can be used for application profiling. SGI offers a set
of performance analysis tools that use processor event counters for application profiling [43, 51].
Even though the hardware event counters in the Hub and Router ASICs offer valuable information
about the application memory behavior, the directory cache coherence transactions, and the inter-
connect network traffic, there are no tools that use this information to aid in performance analysis
of parallel programs on the Origin. Furthermore, very little information exists about the memory
system performance of large Origin systems. The existing publications [19, 50] focus on small
systems, and they do not evaluate the impact of the directory protocol on memory performance.

The contribution of this thesis is twofold. First, it gives a detailed analysis of the memory
performance on the Origin 2000, evaluating the system architecture, the directory cache coherence
protocol, and the trade-offs that influenced their design. Second, it presents a way of analyzing
application memory performance using the information provided by the Origin hardware event
counters. A suite of microbenchmarks, snbench, was written to help evaluate Origin mem-
ory performance and the directory protocol. The microbenchmarks measure memory latency and
bandwidth for different directory protocol transactions, and various combinations of thread and
memory placements. The snbench suite was used to analyze a number of Origin systems, from
the early 195 MHz R10000 systems to the latest 400 MHz R12000 systems, and ranging in size
from dual-processor to 128-processor systems. A memory profiling tool, snperf, uses the infor-
mation provided by the Origin hardware event counters to evaluate application memory behavior.
The profiler continuously samples the event counters for the duration of the application execution
and stores the samples into a trace file. The post-mortem analysis tool uses the high-precision
timestamps in the trace files to correlate events in application threads, the memory system and the
network interface. Combined thread, node and network metrics present a picture of the application
resource usage, which may reveal potential performance problems. The Irix operating system does
not provide an interface to the hardware event counters that supports high-resolution (sub 1 ms)
sampling. Since one of the goals of the memory profiler was to capture the behavior in short appli-
cation phases (e.g., the matrix transpose in the FFT kernel), a new interface to the hardware event
counters was needed. The snpc loadable kernel module (LKM) exports the hardware event coun-
ters as a set of memory mapped files, enabling the profiler to be written as a regular user process,
which increases the flexibility of the profiler and minimizes the impact on the operating system.
Even though the microbenehmark suite and the memory profiler were written for the Origin 2000,
we believe that our approach is applicable to other ccNUMA systems.

The thesis is organized as follows: Chapter 2 discusses related work. Chapter 3 introduces
the basic concepts behind the directory-based cache coherence, and gives an overview of the Ori-
gin 2000 hardware implementation and the ccNUMA features of the Irix operating system. Chap-
ter 4 presents the implementation of the snbenchmicrobenchmark suite, and the results collected
on a variety of Origin systems. The implementation of the memory profiler and the loadable ker-
nel module is presented in Chapter 5, while Chapter 6 shows some examples of how the memory
profiler can be used. Chapter 7 concludes the thesis.

8

Chapter 2

Related Work

2.1 Microbenchmarks

Microbenchmarks are small programs designed to measure a very specific aspect of an underlying
system architecture. Microbenchmarks can be written in assembly or in a high-level language. In
the later case, they evaluate not just the hardware performance but also the quality of the compiler
and the supporting run-time libraries. The results from a collection of microbenchmarks can be
used to predict performance of more complex applications.

One of the pioneering works in using micro benchmarks to evaluate system characteristics was
done by R. Saavedra [33, 34, 35]. His collection of microbenchmarks evaluates both CPU and
memory performance. The CPU microbenchmarks are defined in terms of an abstract machine
that is essentially a Fortran execution environment. Most of the CPU metrics are based on arith-
metic and trigonometric functions: integer and floating-point add, multiply and divide, complex
arithmetic, intrinsic functions, logical operations, branch/switch operations, procedure calls, ar-
ray indexing, and loop overhead. Saavedra also introduced a novel way of evaluating memory
performance. He uses two computing kernels to stride through arrays of different sizes. The read-
use kernel (RU) is used to measure memory read performance; this is a simple reduction sum.
The read-modify-write kernel (RMW) combines read and write operations. For example, a RMW
kernel for a given array size R and stride S is:

for (i=0; i < R; i += S)
a[i] = a[i]*a[i] - CONST;

The P 3 diagram is constructed by varying the array size R and stride S. This process yields a
number of curves, where each curve represents a fixed array size and the data points on each curve
give timing results for a given array stride (increasing in powers of two). Figure 2.1 shows the P 3

diagram for a RMW kernel measured on a 250 MHz Origin. The array size varies from 16 KB to
32 MB.

The P 3 diagrams reveal various levels of the memory hierarchy and the latency characteristics
of each memory level. Memory parameters can be deduced by observing when the plots move
between different regimes. Saavedra [33] has shown how to use the P 3 diagrams to infer block
size, cache size, associativity and even the fact that replacement strategy is random instead of LRU
or FIFO. For example, Figure 2.1 reveals that the primary data cache size is 16K (the 16 KB curve

9

8 32 128 512 2K 8K 32K 128K 512K 2M 8M

Stride

0

100

200

300

400

500

600

700

800

tim
e

(n
s)

64K - 1M

2M
4M

8M - 32M

Figure 2.1: The P 3 diagram for a 250 MHz Origin system

fits entirely in L1). The secondary cache size is 4 MB two-way set-associative with a random
replacement policy: all curves up to and including 1 MB fit in the L2; the 2 MB curve is slightly
above others which implies that the set size is 2 MB with a random replacement algorithm (some
lines are replaced even though the whole array fits in one cache set); there are two sets in the cache
because the 4 MB curve is just slightly below the curves for larger array sizes where each miss goes
to main memory (again, the curve is slightly lower due to random replacement). The secondary
cache is not truly set-associative: it uses way prediction bits that are revealed by increased latency
for 64 KB – 1 MB cirves at strides 16–512 KB. A miss to main memory combined with a writeback
of a dirty line costs ≈ 450 ns; the secondary cache line size is 128 bytes (curves 4M–32M flatten
out at stride 128). Each TLB entry maps two consecutive 16 KB pages and the TLB miss penalty
is ≈ 300 ns (the jump for 4M+ curves when stride exceeds 32 KB).

While the P 3 diagrams reveal the basic memory parameters, the measured latencies do not
accurately reflect the memory timing. There are several reasons for the inaccuracies. First, the RU
and RMW kernels do not use dependent loads—an optimizing compiler will unroll the loop several
times and issue the loads in parallel; the measured time of the kernel, divided by the number of
loads therefore reflects the pipelined load latency, where multiple loads can overlap on a processor
capable of processing more than one outstanding load. Second, the microbenchmark includes the
loop overhead, and it makes no attempt to subtract it from the total time. Third, the loop is timed
with standard Unix time functions; the precision of such timer facilities is usually around 10 ms,
which requires a high number of repetitions for accurate results.

Another collection of microbenchmarks which evaluates memory parameters is lmbench [28]
by McVoy and Staelin. Unlike Saavedra’s microbenchmarks, which focus on the CPU perfor-
mance, McVoy and Staelin’s microbenchmarks were designed to evaluate operating system per-

10

formance. They include codes which measure the time for process context switching, interprocess
communication, I/O, virtual memory system performance, and various Unix system calls (e.g.,
fork, exec and getpid). The lmbench suite of tests also includes two microbenchmarks that
evaluate memory latency and bandwidth parameters. They recognize the deficiency of Saavedra’s
kernels to evaluate memory latency; instead of the pipelined latency they measure latency by tim-
ing the execution of a pointer-chasing loop (p = *p). (Early versions of this benchmark also
assumed that the load instruction takes one clock cycle and thus subtracted one clock cycle from
the measured latency). Similar to Saavedra’s P 3 diagrams, their latency microbenchmark varies
the size of the linked pointer list and the stride between the elements. The resulting latency plots
are similar to Saavedra’s P 3 diagrams.

The latency measurement in lmbench is quite accurate given that the microbenchmark is port-
able and written in a high-level language (C). McVoy and Staelin’s method has some problems,
though. For example, they assume that the cache has a LRU replacement policy—a walk through
an array larger than the cache does result in a few cache hits on systems with a random replacement
policy but the number of hits is comparatively small and does not significantly skew the results.
Additionally, the pointer-chasing kernel measures the back-to-back latency, which is a pessimistic
estimate of memory latency. On systems that return the critical data word first, the back-to-back la-
tency includes the time when the processor is blocked due to a shared resource (e.g., the secondary
cache interface on R10000). McVoy and Staelin argue that the optimistic latency measure (the time
from the detection of a miss until the memory returns the critical word and the processor restarts
the pipeline which they call latency in-isolation) is too optimistic and not likely to be relevant for
actual commercial programs.

Accurately estimating the lower bound on load latency is a nontrivial task, especially when
the microbenchmark is intended to be portable. Hristea et al. [19] have written another collection
of microbenchmarks that focuses entirely on memory performance. They distinguish between
the back-to-back latency (pointer-chasing kernel, similar to the one used by lmbench) and restart
latency (i.e., latency in isolation). They estimate the restart latency by adding an increasing amount
of work instructions following the load, where the work instructions do not generate any memory
requests and are dependent on the result of the load. When the time needed to execute the work
instructions exceeds the time when the shared resources are busy, the work time is subtracted from
the total time, which yields an estimate of the restart latency. They have compared results on the
Origin 2000 and Sun UE 10000. The latency results show a significant difference between the
back-to-back and restart times for the R10000. Hristea et al. also recognized that different cache-
coherence transactions incur different costs. They use remote threads whose task is to place the
cache lines in the desired state. For the Origin, results are presented for unowned, clean-exclusive
and dirty-exclusive lines. Finally, Hristea et al. used the microbenchmarks to evaluate NUMA
latencies and bandwidths—they present results on the Origin 2000 where the requestor is both at
the home node and one hop away.

A popular microbenchmark which evaluates pipelined memory bandwidth is STREAM [27].
The kernels in this microbenchmark use four typical operations used by scientific codes written
in Fortran: copying an array to another array, multiplying all elements of an array by a fixed
value, computing a sum of two arrays, and computing a sum of two arrays where the second array
is multiplied by a scalar. The results are computed on arrays that do not fit in the processor’s
caches. In all kernels the results are written to a separate array. STREAM does not evaluate pure
memory read bandwidth. Both lmbench and Hristea et al. use a reduction loop to evaluate memory

11

read bandwidth. Additionally, lmbench also evaluates memory write and copy bandwidths by
measuring the performance of manually unrolled loops and the library bcopy function.

Our collection of microbenchmarks, called snbench, focuses on back-to-back and restart laten-
cies and memory bandwidth. The primary goal was accuracy instead of portability. The latency
kernels were written in assembly to have full control over instruction execution. Another goal of
our mucrobenchmarks was the evaluation of ccNUMA coherence protocol transactions: snbench
has the ability to place threads and memories anywhere in the system, and to place cache lines in
any coherence state before executing the timed kernel. We also use front-end scripts to determine
the topology of the Origin system and generate a number of invocations of the snbench exe-
cutable with different combinations of thread placement. These experiment groups are designed to
evaluate the characteristics of several important classes of Origin coherence protocol transactions.
We use a pointer-chasing kernel similar to the one used in lmbench to evaluate the back-to-back la-
tency. We have developed a new algorithm to automatically evaluate the restart latency. The basic
approach is similar to the one used by Hristea et al., except that our algorithm uses automatically
generated kernels in assembly language to get around compiler optimizations. Finally, we use a
different algorithm for computing restart latency.

2.2 Performance Analysis Tools

Many tools have been used to help users to speed up applications. There are many performance
analysis tools and many ways to evaluate program behavior. The most basic information about
program execution is the number of times each instruction, statement, basic block, or function
has been executed. This information can be collected by instrumenting the executable at either
compile or run time. While counts give information about relative frequency of execution for each
part of the program, these frequencies do not necessarily have a strong relationship with the time
spent in each section. The simplest approach in collecting timing information is to use statistical
profiling: the program is interrupted at specified intervals, and the value of the program counter
is used to index into an array of counters that can be mapped back into program source code. On
Unix systems, the prof command [4] uses this approach.

Statistical profiling can be combined with a static program call graphs to attribute parts of the
execution time for each function to the other functions it calls (function’s descendants in the call
graph). The gprof execution profiler [15] uses instrumentation added by the compiler to obtain
runtime information about function call counts. The run-time library also constructs the histogram
of the location of the program counter with the help of the operating system. Function call counts
and a program counter histogram are combined in a postprocessing step that attributes the time for
each function to the functions that call it. Each parent in the call graph receives some fraction of a
child’s time. With gprof, timing attribution is based on the number of calls from parent to child:
if a parent called a child function p times and the child was called n times in all, a fraction of p/n
of the total time spent in the child will be attributed to the parent. This does not necessarily reflect
true run-time behavior: if calls from function A cause function C to return immediately while calls
from function B account for the majority of time spent in C, the attribution of C’s time to A and B
based only on the number of calls can be inaccurate.

Statistical profiling answers the question about how much time was spent in each part of the
program, but it does not give any answers about the cause. The operating system usually collects

12

some statistics during program execution, such as the number of page faults, floating point excep-
tions and process memory usage. An integrated performance analysis framework such as SGI’s
SpeedShop [51] uses this information to help the user characterize program behavior: whether
the process is CPU-bound, I/O-bound, or memory-bound. It can also help in program debugging
by instrumenting calls to memory allocation functions and matching memory request and release
calls. Performance analysis with SpeedShop is done by first profiling the application with one
or more experiments and then analyzing the profiles with a separate GUI interface. SpeedShop
experiments include both traditional (flat) and call-graph based statistical profiling; in the latter,
SpeedShop performs proper attribution of the time spent in the callee to the callers by unwinding
the stack on each clock tick to obtain the complete run-time call chain.

With the increasing use of superscalar and out-of order instruction scheduling, it is even more
difficult to determine how the program spends its time. However, it is increasingly common for the
designers of microprocessors to include hardware support for counting various types of events or
even profiling instructions during the execution in processor’s pipelines. The MIPS R10000 pro-
vided a set of on-chip event counters [48], which can be used to count the number of cache misses,
memory coherence operations, branch mispredictions, TLB misses, and to determine instruction
mix for both issued and retired instructions (R10000 uses speculative execution along predicted
branch paths). Similar hardware performance counters have appeared in other processors: Cray
vector processors [10], DEC Alpha [12], HP PA-8000 [20] and Intel Pentium processors.

These counters were primarily used by hardware developers and a few performance analysts.
To be used effectively, hardware event counters require some operating system support and tools
which use them. Cray Research traditionally offered strong support for hardware performance
monitors. SGI was the first workstation and server vendor to include OS support and tools to
use hardware performance counters. The Irix operating system supports virtualized performance
counters, which are a part of each kernel-visible thread context [44]. Even though the R10000
processor only includes two physical counters, the operating system removes this limitation by
multiplexing several events on one hardware counter. No special instrumentation is required to
profile a program with hardware event counters. Users can measure cumulative event counts for the
whole duration of the process with the perfex tool [43]. SpeedShop uses hardware event counters
for statistical profiling by using performance counter overflow as the interrupt source. This makes
it possible to correlate processor events (e.g., cache misses) with the locations in program source
code.

DEC’s Digital Continuous Profiling Infrastructure (DCPI) project [2] used hardware event
counters to perform statistical profiling of the entire operating system, including the kernel, shared
libraries, and all user-level applications. The data collection was designed for minimal system
impact. The DCPI tools provided profile information at varying levels of granularity, from whole
images (executables and shared libraries); down to procedures and basic blocks; down to detailed
information about individual instructions, including information about dynamic behavior such as
cache misses, branch mispredicts, and other stalls. The profiler ran on in-order DEC Alpha pro-
cessors, which enabled the analysis tools to attribute stalls precisely to each instruction. Precise
attribution of instruction stalls is no longer possible on an out-of-order processor. In order to
achieve the same level of precision on an out-of-order processor, the DCPI authors designed a new
form of hardware support for instruction-level information to be used with the DCPI tools [11].
They proposed an approach where the processor instruction fetch unit selects an instruction in the
input stream at random and tags it with a special bit (the ProfileMe bit). As a tagged instruction

13

moves through the procesessor pipeline, a detailed record of all interesting events and pipeline
stage latencies is collected. This information is made available to the profiling software when the
instruction is retired.

With the widespread availability of performance monitoring features in modern microproces-
sors there is a need to standardize the programming interfaces which are used to access these
features. The PerfAPI [29] and PCL [5] projects aim to provide a portable library of functions
and a standard set of performance monitoring events to be used by application writers who wish
to instrument their codes in a portable way. Both projects support the majority of modern mi-
croprocessors and operating systems where the counting of hardware events is possible. They
offer different language bindings (C, Fortran, Java) and they define a common set of event defini-
tions; however, not all events may be implemented on all systems, which presents the fundamental
problem for portability. The applications that need to be truly portable need to restrict the use of
hardware events to the small group which is implemented on all systems (typically the number of
CPU cycles and cache misses).

All projects described so far that use hardware event counters look at the application behavior
from a processor-centric perspective. They all use performance-monitoring features that are im-
plemented in the processor; while this offers plenty of data about processor-related events, all the
information is lost when memory requests leaves the processor. At best, the processor event coun-
ters provide the latency of a memory operation and a glimpse into the cache coherence protocol for
first- and second-level caches that are typically controlled by the processor. While this information
is reflected in the program timings, the performance analyst typically cannot determine application
memory behavior, especially in distributed systems with many independent resources (memory
controllers, I/O units, network interconnect links) and complex cache coherence protocols. In such
systems, distributed resources can become distributed bottlenecks.

Our memory profiling tool attempts to correlate processor events (thread metrics) with events
in the memory subsystem on each node (node metrics) and the interconnect network (network
metrics). The memory profiler does not use statistical sampling: to facilitate correlation between
various sources of performance data the memory profiler continuously stores samples from pro-
cessor, node and router counters into a set of output files; each sample is timestamped with a
high-resolution clock. The post-mortem analysis tools correlate samples from different trace files
and present all metrics on an unified timeline.

14

Chapter 3

Background

Multiprocessor systems have been used for a long time to construct computers with a much higher
aggregate performance than the fastest uniprocessor system. In order to leverage the fast design
cycle of modern microprocessors, the most common way to harness the power of multiple com-
modity microprocessors is a design based on a common bus that connects the microprocessors, the
system memory, and one or more I/O bridges. Such systems use bus snooping to enforce cache
coherence; they are commonly referred to as symmetric multiprocessor systems (SMPs). This
acronym is used in operating system literature to describe multiprocessor kernels where all proces-
sors are functionally equivalent, and it is also used by computer architects to describe systems that
implement the shared memory programming model. In such systems, all processors share the same
(physical) address space and the communication is based on memory operations such as loads and
stores. The SMP systems typically have support for atomic memory operations, which are the
basis of higher level synchronization primitives such as locks, semaphores and barriers. The terms
shared memory programming and uniform memory access (UMA) are often used interchangeably,
although the terms are not strictly equivalent.

SMP systems are widely used as servers and are being used as high-end workstations. They
are relatively easy to build and relatively easy to program: the shared address space programming
model is well understood. The snoopy bus that is the basis of cache coherence protocols is at the
same time the fundamental limitation to their scalability. There are several mechanisms which
facilitate a higher bus throughput and thus a higher processor count: multiple interleaved split-
transaction busses combined with relaxed memory models and a lot of clever engineering have
pushed the number of microprocessors in a single SMP system up to 64. However, such large
processor counts are pushing the scalability limits of SMP systems.

Scalable multiprocessors replace a shared bus with a scalable interconnect. This change opens
up a vast design space that covers a range of systems from tightly coupled multiprocessor sys-
tems to networks of workstations. The shared address space that makes SMP systems so attractive
is typically the first casualty of scalability. Scalable multiprocessors replace it with some form
of message passing, either explicitly through communication libraries (such as PVM or MPI) or
implicitly with parallel language constructs which are translated into messages by the compiler
(e.g., High Performance Fortran or OpenMP). The programming model is suitable for relatively
coarse-grained parallelism, depending on how tightly the processor is integrated with the net-
work. Clusters of relatively inexpensive computers connected with a fast general-purpose network
(Myrinet, 100 MB/s Ethernet) are gaining popularity in scientific processing space due to their

15

price/performance characteristics. When used with commercial applications, they are typically
found in high-availability cluster setups.

However, eliminating the shared bus does not preclude a shared address space. Scalable cache
coherence can be implemented with a protocol which keeps track of the state of each cache line by
exchanging messages among the participants (processors and memories). Scalable cache coherent
systems consist of a number of nodes, each with one or more processors, a portion of system
memory and a communication interface; the nodes are linked together with a scalable interconnect.
Such systems deliver the convenience of programming in a shared address space and a promise of
scalability to high processor counts.

The SGI Origin 2000, although not the first commercially available scalable multiprocessor
system, was nonetheless one of the most ambitious designs when it was introduced in the market.
Its design came out of two research efforts at Stanford University, the DASH multiprocessor [23]
and its follow-on, the FLASH project [22]. Both projects explored the limits of a particular multi-
processor design, the cache-coherent nonuniform memory architecture. The Origin 2000 family of
multiprocessor systems was introduced by SGI in 1996. The modular design allows for scalability
from two to 512 processors. The hardware cache coherence is achieved by means of a memory-
based directory cache coherence protocol. It features an aggressive communication mechanisms
and hardware and software support for NUMA features such as page migration and replication,
support for explicit thread and data placement and a novel way of enforcing TLB coherence (di-
rectory poisoning).

This chapter describes the basics of scalable shared-memory multiprocessing and the design
and implementation details of the Origin 2000. Section 3.1 gives an overview of directory-based
cache coherence and some of the design trade-offs. In Section 3.2, we describe the choices made by
the Origin designers. In particular, we describe the hardware organization, the network topology,
and the design of the directory cache coherence protocol. The ccNUMA hardware features need
software support. Section 3.3 gives an overview of the operating system interfaces and commands
that let user applications take advantage of various Origin hardware features.

3.1 Directory-Based Cache Coherence

The cache coherence in SMP systems is typically enforced with a snoopy bus protocol such as
MESI (Illinois) [30]. The unit of coherence is a small cache line (usually between 32 and 128
bytes). Each processor maintains a state of each cache line in its local cache, In the MESI pro-
tocol, the state is either invalid, shared, exclusive or modified. Several processors may have a
read-only copy of a shared cache line in their local caches simultaneously. A processor can ob-
tain an exclusive copy, which requires that the other processors invalidate that cache line in their
local caches. A processor can modify the contents of a cache line only after obtaining exclusive
ownership; at that time, the state is changed from exclusive to modified. When the line is in the
modified state, the current owner will supply the data when another processor requests a copy.
The data for exclusive lines can be supplied either by the owner or by the memory controller. The
cache controller performs state transitions by processing memory requests from the processor and
by snooping on the requests on the shared bus. The simplicity of this scheme relies on the shared
bus. All memory requests are broadcast on the bus and all processors (and memory controllers)
listen in on the traffic.

16

A scalable multiprocessor decouples the system into a set of nodes linked together with a scal-
able interconnection network. Each node consists of one or more processors with corresponding
caches, a portion of system memory, and a communication assist which connects the node to the
rest of the system. There are several approaches to achieving cache coherence in scalable multi-
processors. The broadcast and snooping mechanism can be extended with a hierarchy of broadcast
media such as busses or rings. Another approach is based on the concept of a directory: the global
state of each cache line is maintained in a known location—the directory—where the requests can
go and look it up. Each cache line is assigned a home where the directory state is kept. Typi-
cally, each node in the system is home to a portion of the system memory. Yet another approach
uses a two-level protocol hierarchy where the inner protocol keeps the data coherent within a node
and the outer protocol maintains global coherence. The inner and outer protocols need not be the
same. A common organization is for the outer protocol to be a directory protocol and the inner
one to be a snooping protocol [23, 25]. Other combinations, such as snooping-snooping [13] and
directory-directory [9] are also possible.

On a machine with physically distributed memory, nonlocal data may be replicated either in
the processor’s caches or in the local main memory. The systems that replicate data only in pro-
cessor caches and keep the data coherent in hardware at the granularity of cache lines similar
to the bus-based systems are called cache-coherent nonuniform memory access (ccNUMA) archi-
tectures. More generally, systems that provide a shared address space programming model with
physically distributed memory and coherent replication (either in caches or in local memory) are
called distributed shared memory (DSM) systems. The ccNUMA approach is an example of the
DSM architecture. Other DSM system architectures include COMA (cache-only memory archi-
tecture) [13, 18], Simple COMA [36, 32], and software DSM approaches [24, 6, 21]. The de-
sign space for DSM architectures is very broad; however, performance issues favor designs which
implement cache coherence in hardware. Among hardware solutions, directory-based ccNUMA
systems appear to be the most popular choice for scalable shared-memory multiprocessing.

3.1.1 Protocol Operation

The directory protocol is invoked if the processor makes an access that its cache cannot satisfy by
itself. For example, an access to a cache line which is not present in processor’s cache or a store to
a read-only copy of the cache line. Unlike the snoopy cache coherence where the processor simply
places the request on the shared bus and waits for a response from either memory or another
processor, the directory protocol has to communicate with other participants in the system in order
to satisfy the request. First, the protocol needs to find out enough information about the state of
the cache line to determine what action to take. If there are other copies cached in the system,
the protocol must be able to locate them in case it needs to invalidate them. Finally, the protocol
must provide a way of communicating with the other copies. The directory protocol finds the
information about the state of cache lines by looking up the directory through network transactions.
The location of copies is also found from the directory and the communication with other copies
is done by network transactions in an arbitrary interconnection network.

In a ccNUMA system, each cache line is assigned a home node. The home keeps the global
state of the cache line in addition to the data. Each node in the system is home to a portion of total
system memory; the home node is determined from the globally unique address of the cache line.
The nodes are connected in a network. In addition to the memory controler, each node also has a

17

communication assist which is responsible for communicating with other nodes. The local node,
or requesting node is the node containing the processor that issues a request for the cache line. The
communication assist in the local node sends a network message to the home node asking for a
copy of the cache line. Depending on the directory state of the cache line, the protocol returns a
copy immediately if there are no other copies cached in the system. If there are read-only copies
cached by other nodes in the system and the local node requests an exclusive copy, the directory
needs to locate all sharer nodes and invalidate their copies before granting the local node exclusive
access. Finally, if the only valid copy of the cache line is located in a remote processor’s cache,
the directory needs to locate the dirty node, invalidate the dirty copy in remote processor’s cache
and send the modified data to the local node (SGI literature refers to this as an intervention). The
owner node is the node that currently holds a valid copy of the cache line and must supply data
when needed; in directory protocols, the owner is either the home node or the dirty node.

When a cache miss occurs, the local node sends a request to the home node where the directory
information for the cache block is located. On a read miss, the directory indicates from which
node the data may be obtained; on a write miss, the directory identifies the copies of the block
and the protocol needs to invalidate the copies by sending invalidate messages to each individual
copy. Each invalidation requires a separate acknowledgment after the node has invalidated the
cache line in its processor’s caches; in systems which implement strict memory consistency (such
as Origin 2000), the local node can proceed with a write only after the acknowledgments from all
sharer nodes have been received.

3.1.2 Directory Organization

The natural place for directory information is to include it with the main memory in the home
node. At the very least, the directory information needs to include cache line state and enough
information to locate the owner or the list of sharers. This scheme is known as flat directory scheme
because the source of directory information is determined by the address of the cache line. On a
cache miss, a single network transaction is sent directly to the home node to look up the directory
regardless of how far the home node is. An alternative to the flat memory scheme is to organize the
directory as a hierarchical data structure (a tree). In the hierarchical directory schemes, the source
of directory information is not known a priori: upon a miss, the directory information is found by
traversing up the hierarchy by network transactions until a node is reached which indicates that
its subtree has the desired information. The latency and bandwidth characteristics of hierarchical
directory schemes tend to be much worse than that of the flat schemes; hierarchical organizations
are therefore not popular in modern multiprocessor designs.

In flat directory schemes, the list of sharers can be included in the directory along with the cache
line state. If the directory needs to invalidate a list of sharers the information is available when the
original request reaches the home node. Since all relevant directory information is kept in memory
at the home node, this approach is known as the flat memory-based scheme. Origin 2000 uses
this approach; similar designs include the Stanford DASH and Flash machines. There are several
possibilities on how to keep the list of sharers. The simplest case is to keep a vector of presence
bits where each sharer is represented by a single bit—if the bit is set the corresponding node has
a cached copy of the cache line. If the system contains many nodes, the directory information
can consume a significant portion of system memory. An alternative to the bit vector scheme is
to keep the sharers organized as a linked list (limited pointer directories) or to keep a coarse bit

18

vector where a single bit represents several nodes. Another alternative is to organize the directory
itself as a cache. For example, the Origin systems use two directory formats to keep the metadata
overhead low: systems up to 32 processors (16 nodes) use a 32-bit directory entry for each 128-
byte cache line (a 3% memory overhead); larger systems use a 96-bit directory entry with a 64
presence bits (a 9% overhead) with the protocol reverting to a coarse-grained scheme where each
bit represents eight nodes for systems larger than 128 processors (64 nodes). Regardless of the
directory organization, the memory-based scheme keeps all information about the sharers at the
home node.

An alternative to the memory-based scheme is for the directory entry to contain only a pointer
to the node that holds a copy of the cache line. When there are multiple sharers of the cache line,
each node holding a copy keeps a pointer to the next sharer. The sharer list is usually organized as a
doubly-linked list to reduce the number of transactions required when one of the sharers removes a
copy of the cache line. Instead of the main memory, the directory information is distributed along
with the copies of the cache line; this approach is known as the flat cache-based scheme. The
distributed maintenance of the sharers is considerably more difficult than manipulating the pres-
ence bits or a linked list stored at the home node. The complexity issues of this design have been
alleviated by the publication of a standard for cache-based directory organization and protocol, the
IEEE Scalable Coherent Interface (SCI) [17]. Several commercial systems use the SCI protocol
(e.g., Sequent NUMA-Q [25], Convex Exemplar [9], and Data General [8]). While the cache-
based schemes reduce the memory used for directory data, the additional transactions required to
maintain distributed directory state increase the critical path latency. For systems of moderate size,
it is not clear whether the reduction in memory offsets the decrease in memory performance.

3.1.3 Performance and Correctness Issues

The directory protocol must maintain the correct states of cache lines while preserving serialization
and ordering relationships required by the coherence and consistency requirements. Additionally,
the protocol must be free from deadlock, livelock and, if possible, starvation. At the same time, the
directory protocol should satisfy two basic performance goals—to reduce the number of network
transactions generated for memory requests and to reduce the number of network transactions on
the critical path. This section describes some trade-offs for improving protocol performance for
flat memory-based directory protocols.

Figure 3.1 shows three different protocol transactions that could be used to move the owner-
ship of a cache line from the current owner R to the requestor L; H is the home node. All three
transactions start with the local node sending a request for ownership transfer to the home node.
In a strict request/reply protocol, the home node responds to the requestor with the identity of the
current owner. The local node then sends a separate request to the remote node, which replies to
the requestor with the cache line contents and informs the home of the new owner’s identity with a
revision message. This transaction requires five network messages, four of which are on the critical
path.

The number of network messages can be reduced by one when the strict request/reply is re-
placed by intervention forwarding. Instead of the requestor sending the message to the owner, the
home node forwards the intervention; the owner responds to the home node, which in turn sends
the reply to the requestor. The latency is not reduced as there are still four messages on the criit-
ical path. Intervention forwarding has a disadvantage that the home node needs to keep track of

19

RL H
1:request

(a) strict request-reply

RL H

(b) intervention forwarding

RL H

(c) reply forwarding

2:response

3:intervention

4a:reply

4b:revise

3a:reply

1:request 2:intervention

3b:revise

2:intervention1:request

3:reply4:reply

Figure 3.1: Reducing protocol latency through forwarding

outstanding requests instead of the requestor. This means that the buffering resources at the home
node have to be increased substantially: if there are P processors in the system, each having up to
n outstanding requests, the home node would have to keep track of nP requests in the worst case
instead of only n required when the request tracking is done by the requestor. This requirement
makes intervention forwarding an unlikely protocol choice.

The number of messages on the critical path can be reduced to three by the use of reply for-
warding. This transaction is similar to intervention forwarding—the home node forwards the in-
tervention request to the remote owner; however, the remote node sends a reply to the requestor
directly and informs the home node with a revision reply. The critical path now consists of the
original request message, followed by the intervention and reply; the revision message is sent in
parallel with the final reply. This scheme has the best latency and bandwidth characteristics. It
does have a disadvantage of increasing the message dependency length from two (request/reply)
to three (request/intervention/reply), which has potential implications for deadlock avoidance.

All distributed systems have to consider the possibility of a deadlock. Typical deadlock sce-
narios in a request/response protocol involve buffer overflow: in order to complete a transaction, a
reply message has to be sent to the requestor; if the output queue is full the transaction cannot be
completed and the system could end up in a deadlock. One solution for this problem is to provide
enough buffer capacity either by anticipating the worst-case scenario or by providing extra buffer-
ing in hardware or in main memory (the approach used in the MIT Alewife system [1]). In large
systems, providing adequate buffering space could result in underutilization of system resources or
could adversely impact system performance. Another solution is to send a negative acknowledge
(NACK) whenever there is not enough output buffer space. The third solution is to provide a sep-
arate request and reply networks, either by physical network separation or by multiplexing (e.g.,
virtual channels) with separate buffering space for each channel.

Both the Stanford DASH and the Origin 2000 systems use separate request and reply networks
for deadlock avoidance. This solution is adequate for strict request/reply protocols. However,
both systems use reply forwarding to minimize request latency. As noted above, reply forward-
ing extends the dependency chain to request/intervention/reply; in order to prevent a deadlock the

20

system would have to provide three separate networks. Since the third network would mostly
be underutilized, deadlock can be prevented with only two separate networks by detecting when
the system could deadlock (e.g., no output buffer space) and either NACK-ing the incoming re-
quest (the DASH solution) or reverting to a strict request/reply protocol (Origin 2000). The use
of NACKs can lead to the livelock problem: the messages are being exchanged but no forward
progress is achieved. In this respect, reverting to strict request/reply protocol is preferable because
it does not suffer from livelock problems.

The final issue that the coherence protocol has to consider is starvation. When NACK messages
are used there is a possibility some requestors always receive a negative acknowledge while other
requestors are accessing a cache line. In reality, starvation is a result of extremely pathological
timing. The designers could discard starvation as a remote possibility (e.g., the DASH protocol
does nothing to prevent livelock and starvation). A relatively inexpensive solution is to assign
priorities to the requests. When a request is NACK-ed the requestor increases the priority and
reissues the request. When the home node receives a request it cannot satisfy immediately it
updates the priority level which is stored in the directory entry; all requests with priority less than
the directory priority are NACK-ed. Eventually, the processor that has been denied access to the
cache line will eventually increase priority high enough to override all other processors and obtain
the ownership of the cache line.

3.2 Origin 2000 Hardware Design

The Origin 2000 architecture is an outgrowth of the Stanford DASH and Flash research projects.
The systems debuted in 1996 with machine sizes ranging from two to 64 processors; subsequent
versions can scale up to 512 processors. The system is based on MIPS R10000 processors and
uses a tightly integrated memory and network controller to implement hardware cache coherence
with a flat memory-based directory protocol.

Figure 3.2 shows the logical organization of an Origin 2000 system. It consists of one or
more nodes connected with a fast scalable network. Each node contains two R10000 processors, a
portion of shared memory, and a directory for cache coherence. The processors are connected to
the integrated memory and network controller (the Hub) via a multiplexed system bus (the SysAD
bus). The Hub acts as an integrated memory, directory, and network controller and implements a
fast I/O port (the XIO interface) connecting the node to the I/O subsystem (the Xbow ASIC). Two
nodes access the local I/O subsystem through separate XIO interfaces. The scalable interconnect
network is organized as a hypercube. The network is based on a six-ported Router ASIC with
two nodes connected to a router and the remaining four ports used for links connected to other
Router ASICs. Systems larger than 64 processors are organized as a fat hypercube with individual
32-processor hypercubes connected together with a metarouter.

3.2.1 Cache Coherence Protocol

The Origin 2000 cache coherence protocol is based on the standard three-state invalidation-based
directory protocol with several optimizations. It is a nonblocking protocol and it uses reply for-
warding with dynamic back-off to prevent deadlocks. The protocol is independent of network

21

CrayLink Interconnect

Node

Router

Router

Router

Module

Node

R10000 R10000

Cache Cache

HUB

Directory/
Main

Memory

Module

Module

ModuleModule

Router
Module

Router

to
CrayLink

Interconnect

XIO

Router Router Router

Module

Figure 3.2: Logical organization of the Origin 2000 system

ordering. In addition to processor requests, the protocol supports coherent DMA requests and an
innovative way to achieve lazy TLB shootdown.

Each cache line has an unique home determined by the physical address of the cache line.
Physical addresses are 40 bits wide: the upper 8 bits select the home node while the lower 32 bits
represent the local address within the node. This mode (called M-mode) allows for 256 nodes
(512 processors) with a limit of 4 GB of memory per node. An alternative configuration (N-mode)
uses 9 bits to select the node and 31 bits for local offset for a total of 512 nodes with 2 GB of
memory per node; this mode is not used in existing Origin systems. An in-depth description of
global addressing in the Origin systems is given in [49, pp. 3–23].

The directory protocol is nonblocking: the home node will not buffer a request if the response
cannot be generated immediately (e.g., because the line is owned by another processor). Rather
than buffering the request at home, the directory state is changed to a transient (busy) state while
the current owner is being tracked down. The current owner responds to the intervention by up-
dating the directory with a revision message, which causes the transient state to change to one of
the permanent states (unowned, shared or exclusive). Requests to cache lines in busy state are

22

acknowledged immediately with a negative response, which causes the requestor to reissue the
request later. Starvation is prevented by assigning requests a priority value, which is a function of
the number of times the request was denied.

The protocol does not rely on network ordering: messages could take different routes through
the interconnect network and arrive at the destination out of order. The out-of-order message
delivery can result in several race conditions. Rather than imposing strict network ordering on the
interconnect, the Origin directory protocol handles race conditions explicitly. The only messages
which require point-to-point network ordering are certain uncached operations used to implement
programmed I/O (PIO).

Directory States

The directory protocol is based on states given in Table 3.1. Four of the states are stable: in the
unowned state, the memory keeps the only copy of the cache line; in the shared state, the cache
line may be replicated read-only in one or more processor’s caches (the identity of sharers is kept
in a bit vector stored in the directory); in the exclusive state, one processor or I/O unit keeps an
exclusive copy of the cache line that is either clean or dirty (again, the identity of the owner is
stored in the directory); in the poisoned state, the cache line has migrated to another node during a
page migration and the access will cause a trap if a processor attempts to access this line through
a stale TLB mapping. Transient states are used in the intermediate stages of protocol transactions:
busy shared and exclusive states indicate that the directory should not handle a new request for the
cache line until the previous transaction has completed; the wait state is used to prevent a writeback
race condition.

state description
unowned (UOWN) No cached copies in the system
poisoned (POIS) Not cached, access returns bus error
shared (SHRD) Read-only copies cached by one or more nodes
exclusive (EXCL) Cached in exclusive state by one processor or I/O
busy shared (BUSYS) Directory is busy tracking down a shared copy
busy exclusive (BUSYE) Directory is busy tracking down an exclusive copy
waiting (WAIT) Directory is waiting for a revision message

Table 3.1: Directory states in the Origin directory protocol

The directory information is kept separate from the main memory so that memory and directory
operations can be overlapped. In addition to the cache line state, the directory keeps the identity
of the owner for exclusive lines and a list of sharers for shared lines. The sharers are kept in a
bit vector where each bit represents a node; invalidation messages thus target both processors on
the node. The decision to keep sharers on a per-node basis allows a 64-bit presence bit vector to
cover all nodes in a 128-processor system. Larger systems use a different mode to keep track of
the sharers. If all sharers are located in the same 64-node octant the presence bits again represent
one node in the octant; invalidations are sent to individual nodes. When the sharers are spread
across octants, the directory uses a coarse bit vector scheme where each bit represents eight nodes.

23

Invalidations are sent to all eight nodes, even if some of these nodes may not have a cached copy
of the cache line.

Protocol Optimizations

The first optimization that aims to improve protocol performance is the use of speculative replies.
For all requests that require a data response, the directory controller always performs directory
lookup and memory read in parallel. In most cases, the data are sent as part of the response (e.g.,
read requests on unowned or shared lines). When the home node is not the current owner of the
cache line, the data are sent to the requestor in a speculative reply. The speculative data are used
if the current owner has a clean copy of the cache line. By using speculative replies, the protocol
assumes that it is not likely that the owner has modified its copy. If this is not the case the updated
data have to be returned with the response from the current owner while the speculative data are
discarded.

The Origin protocol supports the full MESI protocol used by the R10000 processor to manage
the L2 cache, including the clean-exclusive state. In exclusive state, the processor is the exclusive
owner of the cache line but it has not modified it yet. The processor can invalidate an exclusive
line from its cache at any time; this does not present a problem on a snoopy bus because snoop
request will miss in owner’s cache when another processor requests a line. This does present a
problem in a directory protocol—while the processor has silently dropped the cache line the home
node still keeps the processor as the owner. One solution is to extend the protocol with replacement
hints: whenever the processor drops a clean line it sends a revision message to the home node. The
disadvantage of this approach is that it uses extra network traffic and wastes directory bandwidth.
The Origin protocol allows a processor to drop a clean line from its cache without notifying the
home node (silent clean-exclusive replacement). If the same processor later requests the cache line
again the directory assumes that the processor has dropped the cache line and immediately returns
a fresh copy. On the other hand, if another processor requests a copy the home node forwards the
intervention request to the owner as if it still had a copy in its cache. The intervention request
will fail. However, the requesting processor can use data returned in the speculative reply. In
this case, the extra cost is the additional intervention request, which would not be necessary if the
protocol used replacement hints. On the other hand, silent dropping of exclusive lines is beneficial
to uniprocessor applications because directory bandwidth is not wasted with replacement hints.

In order to support application execution in ccNUMA environment, the Origin designers de-
cided to implement page migration to improve application performance [7]. Efficient page mi-
gration requires a fast data copy mechanism and the ability to globally purge stale TLB entries.
Implementing a global TLB shootdown algorithm without hardware support can be very costly.
Origin directory protocol allows for an efficient global TLB purge by supporting directory poison-
ing. A cache line can be “poisoned” during the data-copy phase by the copy engine. The poison
read request invalidates all cached copies of the line and sets its directory state to poisoned. When
a processor attempts to read a poisoned cache line via a stale TLB mapping the directory returns
an error. This in turn invokes the kernel exception handler, which recognizes the special error and
invalidates the stale TLB entry. No expensive global synchronization operations are necessary:
processors invalidate stale TLB entries on demand.

24

Protocol Transactions

The directory protocol supports coherent processor read and write operations, coherent I/O requests
which are used by the DMA engines, and a number of noncoherent operations which are used for
processor-initiated programmed I/O. The processor can generate three types of read requests to
coherent memory. The read-shared request (RDSH) asks for a read-only copy of the data; this
request is used for instruction fetches. The read request (READ) returns an exclusive copy if there
are no shared copies cached in the system; an exclusive copy is downgraded to a shared state with
both the requestor and the current owner in the list of sharers; if the line is already shared the
requestor is simply added to the list of sharers. This request is generated when a load instruction
misses in the cache. The read-exclusive request (RDEX) asks for an exclusive copy of the cache
line; it is generated when a store instruction misses in the cache.

Depending on the state of the cache line, read requests trigger different types of directory trans-
actions. If the line is in the unowned state, the home node sends the reply immediately and updates
the directory to reflect the new owner. The unowned transaction requires only two messages, a
request and a reply. If the line is shared read-only among several nodes in the system, and a pro-
cessor requests an exclusive copy of the cache line, the shared copies have to be invalidated before
the requestor can assume exclusive ownership. The resulting invalidate transaction is a three-step
transaction: the requestor sends a request to the home node, the home node forwards invalidations
to the sharers, and the sharers reply with acknowledgment messages to the requestor. Finally, if
a processor requests a copy of a cache line whose directory state indicates that another processor
holds a valid copy, the remote processor needs to relinquish the ownership and possibly send a
locally modified copy to the requestor. There are several variants of this scenario which involve
three participants: the requestor, the home node and the remote owner. The intervention transac-
ton is a broad term, covering all variants of this scenario. The Origin directory protocol supports
two more transaction types, variants of the intervention and invalidate transactions, which are used
when the system detects a possibility of a deadlock. In this case, the directory protocol reverts to a
strict request/reply protocol. The resulting backoff intervention and backoff invalidate transactions
are four-step transactions where the local node first sends a request to the home node, the home
responds with a backoff response to the requestor, the local node then sends the intervention or
invalidate requests to the remote nodes and waits for the response.

3.2.2 Node Board

The node board is the basic building block of the Origin system. It holds two R10000/R12000 pro-
cessors and a portion of system memory and the associated directory memory. Two bidirectional
interfaces connect the node board to the rest of the system. The communication with other nodes
goes through the CrayLink port which connects the node to a router board. The local I/O system is
accessible through the XIO port. At the center of the node board is the Hub ASIC, which connects
the processors, memory, I/O and network interfaces.

Figure 3.3 shows the block diagram of the node board. The processors communicate with
the Hub over a shared SysAD bus. Each processor has a separate L2 integrated instruction and
data cache. Rather than implementing a snoopy cluster, the two processors use the SysAD bus as a
shared resource and do not perform snoops on it. This reduces the latency because the Hub does not
have to wait for the result of a snoop before forwarding the request to memory; however, it is not

25

HUB XIO

Router

800 MB/sec peak

800 MB/sec peak

800 MB/sec peak800 MB/sec peak

800 MB/sec peak

800 MB/sec peak

Directory address/control

Directory data

Address/control

BX ASIC
Main

Memory

R10000
Secondary

cache
1-4 MB

R10000
Secondary

cache
1-4 MB

Directory
Memory

Figure 3.3: Block diagram of the node board

possible to perform local cache-to-cache transfers. There are separate dual inline memory modules
(DIMMs) for main and directory memory which makes it possible for the Hub memory/directory
interface performs data and directory lookups in parallel. The BX ASIC is used to multiplex the
memory data path in order to save Hub pins.

The Hub is internally divided into four separate interfaces. Internal messages are used to com-
municate between the Hub interfaces and each interface has a separate input and output queues.
The central crossbar connects the four interfaces together. Figure 3.4 shows the block diagram
of the Hub ASIC. The external connections (CrayLink and XIO ports) both use a similar proto-
col; the only difference is in the messages used by the communication protocol. The CrayLink
messages are tailored for the needs of directory-based cache coherence whereas the messages in
the XIO protocol are used to control the I/O devices (storage, network and graphics) which have
different requirements. The original version of the Origin featured R10000 processors running at
195 MHz; in these systems, the Hub core operates at 97.5 MHz. Newer systems with 250 MHz
R10000 processors and 300 or 400 MHz R12000 processors have the Hub running at 100 MHz.
All Origin systems have the interconnect network and the XIO interface running at 400 MHz. To
accommodate the variations in Hub frequency, both the network and the XIO interface have to
provide an asynchronous interface.

One of the Hubs in the system can be designated as the source of a global clock. The clock
information is propagated by the routers to all other nodes in the system. This hardware feature
is used to implement a global, synchronous high-resolution (800 ns) cycle counter. Applications
can map a page of Hub physical space into their address space to access the cycle counter directly,
which results in an extremely low access time (300 ns).

26

CrayLink Interconnect

O
utput

F
IF

O

Input
F

IF
O

M
em

ory/D
irectory Interface

Output
FIFO

Asynch/Synch
Interface

Asynch
Interface

Input
FIFO

Input
FIFO

Output
FIFO

In
pu

t
F

IF
O

I/O
 In

te
rf

ac
e

Processor Interface

O
ut

pu
t

F
IF

O

Figure 3.4: Block diagram of the Hub ASIC

Memory/Directory Interface

The memory/directory (MD) interface is an integrated memory and directory controller: it pro-
cesses memory requests generated by the processors and I/O controllers in the system and main-
tains directory information for the memory on the node board.

In addition to the directory state and the sharer list, the Hub provides a set of reference counters
for every 4 KB page of main memory. The number of counters in the set depends on the size of
the system: for systems with less than 64 nodes (128 processors), there is one counter for every
node in the system; in larger systems there is one counter for every 8 nodes. Whenever the MD
interface receives a memory request it increments a counter for the node where the request was
issued. This information may be used by the operating system to dynamically migrate pages and
by the applications to obtain remote access counts for each 4 KB data block. The operating system
can set up an interrupt delivery whenever the number of remote requests less the number of local
requests passes a specified threshold. This indicates that the page is a good candidate for migration
and the kernel may choose to migrate it closer to the requestors. Additionally, the operating system
can allocate 64-bit virtual counters that are updated regularly with the physical reference counters.
The virtualized page reference counters are accessible through a kernel API. An application can
access a set of virtual reference counters corresponding to a 4 KB memory block that stores a
portion of the application data, thus providing an estimate of remote vs. local reference patterns;
the Mutt project [16] provides a library interface that associates virtual reference counters with
portions of application address space. The virtual page reference counters have a major drawback:
the kernel reserves a large portion of main memory for in-core copy of the reference counters; by
default, Irix disables this interface.

In addition to the processing of memory requests, the MD interface implements the at-memory

27

fetch-and-op synchronization mechanism. This mechanism uses uncached memory references to
Hub memory special space (Mspec) [49, p. 23]. The uncached loads and stores to Mspec space
operate on 32-bit words or 64-bit doublewords. The address of the cache line also encodes the
atomic operation to be performed. In addition to a simple read of the cache line, load operations
can also perform atomic increment, decrement and clear. Store operations can perform atomic
bitwise and/or, increment decrement (the stored data is not used in this case). The Hub maintains
a two-entry cache of recently used fetch-and-op cache lines; both load and store operations can
explicitly flush the entry from the fetch-and-op cache. The use of fetch-and-op synchronization
primitives is described in [40].

Processor Interface

The Hub processor interface (PI) converts CPU transactions issued on the SysAD bus into proto-
col requests; additionally, it receives protocol intervention and invalidate messages and performs
coherence operations in one or both processor’s caches. The state of pending requests for each
processor is maintained in a special data structure, the coherency request buffer (CRB). Each pro-
cessor has its own CRB table. The CRB is divided into read request buffers (RRB), which track
outstanding processor read requests; write request buffers (WRB), which track pending stores; and
intervention request buffers (IRB), which keep the information for pending interventions and in-
validates. The RRB, WRB and IRB buffers for each processor are kept coherent to detect possible
race conditions. However, the CRBs for each processor are not kept coherent with respect to each
other. Requests generated by the PI which target the peer processor on the same node have to
be converted into protocol messages and sent through the crossbar in the Hub back into the PI’s
incoming request queue.

Network Interface

The Hub network interface (NI) converts internal Hub messages into CrayLink messages and sends
them out on the CrayLink network. It receives messages from the CrayLink targeting the local
PI, MD and IO interfaces. The network interface also keeps a local portion of the routing tables.
Additionally, the NI is responsible for taking a compact internal invalidation message where the list
of sharers is kept in a bit vector and generating the multiple unicast invalidate messages required
by the protocol.

I/O Interface

The I/O interface (II) contains the logic for translating protocol messages into the messages used
in the XIO protocol. The II also implements two block transfer engines (BTE) which are able to
do memory copy at near the peak of the node memory bandwidth. The BTEs are used in page
migration and page poisoning; the Irix kernel also uses the BTE internally to zero-out memory
pages. The II keeps track of the outstanding IO requests via a set of I/O request buffers (IRB). The
IRB tracks both full and partial cache line DMA requests by the I/O devices as well as full cache
line requests by the BTE.

28

3.2.3 Interconnect Network

The nodes in the Origin system are connected to a high-speed network, which is constructed around
a set of fast routers in different-sized hypercubes. Two ports on each leaf router are connected
to node boards; the other four ports connect router ports, either internally within a module or
externally between different modules by means of external cables (the signalling technology allows
a maximum cable length of 5 meters). Systems up to 64 processors (32 nodes) are organized in
pure hypercubes; Figure 3.5 shows Origin topologies up to 64 processors. The largest configuration
uses all router ports for the construction of the hypercube. In smaller systems, unused router ports
can be used as express links (shown in Figure 3.5 as dashed lines) to shorten the longest distance
between nodes. Systems larger than 64 processors are organized in a fat hypercube where two
or more 32-processor hypercubes are connected together with a metarouter. Figure 3.6 shows the
configuration of a 128-processor system. Larger (256- and 512-processor) Origin systems are built
from 32-processor hypercubes by organizing the metarouter internally as a hypercube.

System topology and routing tables are set statically at boot time. The design is based on
static routing tables that determine packet routing in a pipelined fashion. The header of the packet
contains the exit port when the packet enters the router. The router sends the packet on the selected
exit port and updates the header information with the new exit port for the next hop according to
its local routing tables. This design results in a fast wormhole routing with minimum router delay
(the pin-to-pin packet latency is 41 ns [14]). While the hardware design has a built-in degree of
fault tolerance, the system is not fault-tolerant in practice. When one of the links goes down during
regular operation the system has to be rebooted to determine new routing information. In addition
to the fast wormhole routing based on distributed routing tables, the Router ASIC supports low-
performance source routing where each packet contains absolute routing path in its header. Source
routing is used to access Router registers and for the initial discovery of the system topology.

The Router ASIC

The block diagram of the Router ASIC is shown in Figure 3.7. Each of the six full-duplex ports
guarantees a reliable message delivery by separate physical, data link and message layers imple-
mented in hardware.

The physical transmission layer is based on a pair of Source Synchronous Drivers and Re-
ceivers (SSD/SSR), which transmit 20 data bits and a data framing signal. The 200 MHz dif-
ferential clock signal is sampled at both edges resulting in the effective data transmission rate of
400 MBaud. The Router core operates at 100 MHz; at each clock edge, the core provides 80 bits
of data which the SSD serializes into a 20 bit stream over four 400 MHz clocks. Three router ports
use SGI Transistor Logic (STL) signalling while the other three ports use differential signalling;
the STL ports are used internally inside a module to connect the router board to two node boards
and to another router board while the differential ports are connecting the router boards in separate
modules with external cables.

The data link layer (LLP) guarantees a reliable transmission using CCITT-CRC code with a
go-back-n sliding window retry mechanism [52, pp.137–144]. The basic unit of delivery in LLP is
a micropacket which consists of 128 bits of data and 8 bits of sideband information. The sideband
is used by the message layer to implement virtual channel tagging and message flow information.
The theoretical peak link bandwidth is 800 MB/sec per direction per link.

29

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N
N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N N

N

N N

N

N

N

N

N

N

N

N

N

16 processor
system

8 processor
system

4 processor
system

32 processor
system

64 processor
system

Figure 3.5: Origin 2000 topologies from 4 to 64 processors

R

R R

R

R

R

R

R

R R

R

R

R

R

RR

RR

RR

RR

RR

RR

RR

RR

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R R

R

R

R

R

R

R R

R

R

R

R

RR

RR RR

RRRR

Figure 3.6: 128 processor Origin 2000 system topology

30

LLP

SSD/SSR

LLP

SSD/SSR

LLPLLP

LLP

S
S

D
/S

S
RLL

P

S
S

D
/S

S
R

Receiver Sender Receiver Sender

Sender Sender

R
eceiver

S
ender

R
ec

ei
ve

r
S

en
de

r

Crossbar

SSD/SSR SSD/SSR

Receiver Receiver

Table Table

Table Table

T
ab

le
T

able

Figure 3.7: Block diagram of the Router ASIC

The message layer (Sender/Receiver) defines four virtual channels and a credit-based flow
control scheme that supports arbitrary message lengths. Each message consists of a header mi-
cropacket which specifies message destination, priority and congestion control options. A header
micropacket is followed by zero or more data micropackets with a stop bit designating the last
micropacket in the message. Each virtual channel provides independent flow control and buffering
space; the Router ASIC implements a 256-byte receive buffer for each virtual channel on each
port. The buffers are organized as a set of linked lists; there is one linked list for each possible
output port and each virtual channel. The linked lists are implemented as a dynamically allocated
message queue (DAMQ). Each router port has a local routing table which stores a portion of the
global routing information sufficient to route the incoming messages to the next router hop.

At the core of the Router ASIC is the central crossbar connecting the DAMQs in the receiver
block with the inputs in each of the other five sender blocks. In each clock cycle, the crossbar
arbitration mechanism chooses up to six winners by using a variant of the wavefront arbiter [53].
Each virtual channel from each port can request arbitration for every possible destination, provid-
ing up to 120 arbitration candidates on each cycle. To improve the routing latency in a lightly
loaded system, the Router implements a fast message path. When there are no micropackets in
the DAMQ for a given virtual channel, the micropacket may bypass the DAMQ structure entirely
provided that there is no conflict for the output port in the crossbar. The bypass latency is 41 ns;
when the bypass is not granted the latency increases by two router cycles to 61 ns.

3.2.4 Physical System Organization

The Origin system is physically organized as one or more modules. Several modules are connected
together with external CrayLink cables to construct systems up to 64 processors. A deskside
Origin 2000 system consists of a single module in a chassis. It scales from two to eight processors.
Two modules may be placed in a rack and several racks may be combined together. Figure 3.8

31

shows a fully configured 32-processor system with four modules in two racks: the express links
use external router ports to shorten the longest distance between nodes. A 64-processor system
adds another four modules. The router ports used for express links in 32-processor system are
used to connect modules in separate 32-processor cubes. Systems larger than 64-processors use an
additional rack that holds the metarouter. As with smaller configurations, the metarouter ports are
connected with CrayLink cables to other router ports. Figure 3.9 shows the physical configuration
of a 128-processor system which consists of four 32P hypercubes connected with a metarouter.

Each module holds up to four nodes and two routers. The midplane board is at the center of
the module: the four node boards are inserted from the front and the router boards are inserted
from the back. The midplane provides a standard system clock for both the XIO and CrayLink
interconnection, the STL CrayLinks between the nodes and the local routers, the XIO links for all
four nodes, power distribution, system control signals and SCSI connections. The midplane holds
two XBow ASICs: two adjacent node boards share a single XBow with two separate XIO ports.
The XBow is the gateway to the local I/O system. The BaseIO board, present in every module,
includes two SCSI interfaces, an Ethernet port and two serial interfaces; other XIO boards include
a PCI bridge, ATM, FibreChannel and graphics interfaces.

3.3 The Irix Operating System

The operating system running on the Origin systems is Irix, Silicon Graphics’ version of the AT&T
System V Release 4 (SVR4) Unix system. The Irix kernel is a 64-bit executable. User processes
can use any of the three supported application binary interfaces (ABI): backwards compatibility
is maintained by the old 32-bit ABI while the new 32-bit ABI (-n32) and the 64-bit ABI (-64)
use advanced features of the MIPS architecture. Irix supports symmetric multiprocessing and
multitasking: internally, kernel threads are used for lightweight execution; user processes have a
choice of using user-level threads created with the sproc system call or POSIX threads which are
scheduled entirely in user space. Heavyweight processes can use any of the standard Unix interpro-
cess communication interfaces: System V IPC primitives, POSIX semaphores, or shared memory.
The MIPSpro compilers include support for automatic parallelization and OpenMP programming
models. Irix also supports many of the advanced Unix features: kernel threads, journalled filesys-
tem (XFS), asynchronous I/O and advanced scheduler features such as currency-based scheduling,
gang and frame scheduling and soft realtime processes. The same Irix kernel runs on the whole
range of systems manufactured by SGI, from the entry-level O2 desktop to the largest Origin 2000
supercomputer. This section describes some of the Irix features which were introduced to support
application execution in the ccNUMA environment.

3.3.1 Hardware Graph

A single Origin system can scale to hundreds of processors, routers and I/O units. Rather than
using the old device interface in the /dev directory, Irix introduced a new, hierarchical way of or-
ganizing devices: the hardware graph and its associated hwgraph file system, which represents the
collection of all significant hardware in the system. The hardware graph is a directed graph where
each vertex represents a hardware object: processor, router, disk drive, disk partition, network
controller, etc. There are some additional vertices which represent a collection of objects (e.g., all

32

ConfigurationSchematic Diagram

Node
boards

Router
boards

Midplane

R1 R2

R3 R4

R1 R2

R3 R4

Xpress
Links

Figure 3.8: Physical configuration of a 32-processor Origin system

128p Configuration

32p

Meta Router

32p

32p

32p

Figure 3.9: Physical configuration of a 128-processor Origin system

33

disks) or a grouping of hardware (e.g., a node). Labeled edges are used to connect graph vertices
in a way that shows some relationship between the underlying hardware. For example, an edge
labelled memory points from a vertex representing a node to a vertex representing the memory on
that node. The hardware graph also supports arbitrarily-labeled information associated with each
vertex. This allows device drivers to associate useful data structures and other information with
a particular device. For example, hardware inventory labels are used by the hardware inventory
program (hinv) to print object-specific information about objects, such as processor speed, cache
size, etc.

The internal hardware graph is exported to user-level processes through a pseudo-file system.
The hardware graph file system, mounted on /hw, represents the collection of all hardware in the
system as a tree of files and directories. While the internal graph may contain cycles, these cycles
are broken externally—the hwgfs file system imposes an artificial hierarchy on the hardware graph
and it uses symbolic links that point “up” to higher-level directories. Users cannot create files
in the hardware graph file system; rather, the creation of files and directories is allowed only to
kernel drivers, which export device files by extending the hardware graph by adding new edges
and vertices.

The hardware graph provides the main name space for nodes and routers in the Origin system.
A name is a string of characters in the form of a path that both identifies a node and defines its
location relative to the overall hardware. For example, eight nodes in a 16-processor Origin system
are located in the hardware graph as follows:

$ find /hw -name node -print
/hw/module/1/slot/n1/node
/hw/module/1/slot/n2/node
/hw/module/1/slot/n3/node
/hw/module/1/slot/n4/node
/hw/module/2/slot/n1/node
/hw/module/2/slot/n2/node
/hw/module/2/slot/n3/node
/hw/module/2/slot/n4/node

The naming reflects physical organization of the system: there are four nodes in each module.
Another node name space is the compact node identifier space. All available nodes in the

system are enumerated with small integer numbers starting at 0. This enumeration may change
across reboots if the nodes are removed from the system or placed in another module. The current
mapping from the compact node number (the cnodeid) to the full path in the /hw file system is
defined by the hardware graph directory /hw/nodenum:

$ ls -o /hw/nodenum
total 0
lrw------- 1 26 Jul 10 13:36 0 -> /hw/module/1/slot/n1/node
lrw------- 1 26 Jul 10 13:36 1 -> /hw/module/1/slot/n2/node
lrw------- 1 26 Jul 10 13:36 2 -> /hw/module/1/slot/n3/node
lrw------- 1 26 Jul 10 13:36 3 -> /hw/module/1/slot/n4/node
lrw------- 1 26 Jul 10 13:36 4 -> /hw/module/2/slot/n1/node
lrw------- 1 26 Jul 10 13:36 5 -> /hw/module/2/slot/n2/node
lrw------- 1 26 Jul 10 13:36 6 -> /hw/module/2/slot/n3/node
lrw------- 1 26 Jul 10 13:36 7 -> /hw/module/2/slot/n4/node

34

The processors have their own name space. As with nodes, the primary name space is provided
by the hardware file system. Each path name also identifies the node to which the processor is
connected. Just like the compact name space for nodes, there is a corresponding compact processor
identifier space where each processor is identified by a small integer number. The enumeration
starts at 0 and the mapping from the cpuid to the full path is given by the hardware graph directory
/hw/cpunum. The list of all processors in the system can be obtained as follows:

$ find /hw -name "[ab]" -print
/hw/module/1/slot/n1/node/cpu/a
/hw/module/1/slot/n1/node/cpu/b
/hw/module/1/slot/n2/node/cpu/a
/hw/module/1/slot/n2/node/cpu/b
/hw/module/1/slot/n3/node/cpu/a
...

Unlike nodes and processors, there is no compact enumeration of the routers in the system—
each router can be identified only by a full path in the hardware graph:

$ find /hw -name router -print
/hw/module/1/slot/r1/router
/hw/module/1/slot/r2/router
/hw/module/2/slot/r1/router
/hw/module/2/slot/r2/router

The topology information can be deduced from the hardware graph as well. Each node has an
edge called link that points to the router to which the node is connected. All routers store the
connectivity information in the router directory: edges are labelled as small integers 1–6 where
each integer represents an active router port. Command topology is a simple shell script which
parses the contents of the /hw file system and prints all connectivity information:

$ topology
...
The topology is defined by:
/hw/module/1/slot/n1/node/link -> /hw/module/1/slot/r1/router
/hw/module/1/slot/n2/node/link -> /hw/module/1/slot/r1/router
/hw/module/1/slot/n3/node/link -> /hw/module/1/slot/r2/router
/hw/module/1/slot/n4/node/link -> /hw/module/1/slot/r2/router
...
/hw/module/1/slot/r1/router/1 -> /hw/module/2/slot/r1/router
/hw/module/1/slot/r1/router/4 -> /hw/module/1/slot/n2/node
/hw/module/1/slot/r1/router/5 -> /hw/module/1/slot/n1/node
/hw/module/1/slot/r1/router/6 -> /hw/module/1/slot/r2/router
/hw/module/1/slot/r2/router/1 -> /hw/module/2/slot/r2/router
...

Externally, the hardware graph looks like an ordinary file system; no special system calls are
necessary to access files and traverse the topology. Internally, the hardware graph is accessible
through a kernel API described in [39].

3.3.2 Distributed Memory Management

The distributed memory in Origin nodes places a new set of requirements on the operating system,
the compiler, and the users writing applications for the ccNUMA environment. Since the memory

35

performance degrades if the program references memory on remote nodes, memory locality is an
important goal. The virtual memory management system in Irix was extensively redesigned to
support the requirements of nonuniform memory. Irix provides a rich set of features for managing
memory locality, both automatically and manually. Automatic memory locality management is
based on the concept of adaptability while the manual tools work based on hints provided by users,
compilers, or special high level memory placement tools.

Automatic Memory Locality Management

Automatic memory locality management in Irix is based on memory replication, dynamic memory
migration, and an initial placement policy based on a first touch placement algorithm. Read-only
data can be replicated on multiple nodes to improve locality. By default, the executable code for the
Irix kernel is replicated on every node in the system. User read-only pages are replicated according
to a dynamic coverage radius algorithm. Every memory object has an associated coverage radius
that defines a neighborhood of nodes that are considered to be close to a physical page associated
with the memory object. When a thread incurs a page fault, the page fault handler looks for a
page that contains the data needed in the memory object that covers a portion of the virtual address
space where the faulted page is located. If the missing page is already in memory on a node within
the coverage radius, this page is used; otherwise, a new page frame is allocated on the node where
the page fault occured and the data are copied from the other page. Kernel parameters that control
memory replication are described in [45].

Dynamic page migration is a mechanism that provides adaptive memory locality for applica-
tions running on the Origin systems. The Origin hardware implements a page migration algorithm
based on comparing remote memory access counters to a local memory access counter. When the
difference between the numbers of remote and local accesses goes beyond a preset threshold, an
interrupt is generated to inform the operating system that a physical memory page is experiencing
excessive remote accesses. The kernel interrupt handler decides whether a page should be mi-
grated closer to the node where most of the remote accesses were generated, based on a number
of parameters grouped in the page migration policy. Page migration is controlled either through
global kernel page migration parameters or through the memory management control interface.
Page migration is described in more detail in [41]. In practice, page migration is not widely used
in the Origin systems. Early versions of the Irix operating system have assigned an incorrect page
color to the migrated pages, substantially degrading application performance. Even though this
issue was fixed in never versions of Irix, the applications written for the Origin system typically
perform explicit memory locality management.

When a process touches a page of virtual memory for the first time, the operating system has
to decide where to allocate the associated page frame. Irix supports several different policies for
initial page allocation: the pages can be allocated on a node where the process is executing, on a
fixed node, or on one of the nodes in a group using a round-robin algorithm. The vast majority of
programs are single-threaded; a sensible default page allocation strategy is to place page frames
on a node where the process is executing. This is the first touch allocation policy; combined with
memory affinity scheduling, where the kernel attempts to schedule a process on the same node
where it was running previously, this policy results in good memory behavior for uniprocessor
applications.

36

User-Driven Memory Locality Management

The default memory allocation policies are generally sufficient for uniprocessor applications and
some parallel applications using either compiler extensions (OpenMP) or parallel programming
models (MPI). However, “naive” parallel applications which assume a SMP memory model may
run into trouble. For example, the default first-touch page allocation policy can have a side effect
of allocating all application memory on a single node, if the parallel application initializes its
data in a single thread. Irix provides a memory management control interface [42] to allow users
explicit control over memory system behavior. This interface covers both ccNUMA and generic
memory system control. For ccNUMA, the interface provides control over placement, migration
and replication policies; for generic memory management, the interface provides control over page
size and paging algorithms. The memory management control interface can be used directly, via
OpenMP compiler directives, or via high-level placement tools (dplace, dlook and dprof).

The memory management control interface (MMCI) is based on the specification of different
kinds of policies for different kinds of operations executed by the virtual memory management
system. Users are allowed to select a policy from a set of available policies for each one of these
VM operations. Any portion of a virtual address space, down to the level of a page, may be con-
nected to a specific policy via a policy module. Policy modules control initial allocation, dynamic
relocation and paging behavior of the VM system. For initial allocation, the MMCI interface can
specify what policy to use for placement, page size and what should be the fallback method. Dy-
namic relocation controls the level of replication and the conditions under which a page should
be dynamically migrated. The paging policy controls the aggressiveness and domain of memory
paging.

The placement policy defines the algorithm used by the memory allocator to decide what node
to use to allocate a page in a multinode ccNUMA machine. The goal of this algorithm is to place
memory in such a way that local accesses are maximized. All placement policies are based on two
abstractions of physical memory. A memory locality domain (MLD) with center c and radius r is
a source of physical memory composed of all memory nodes within a router hop distance r of a
center node c. Normally, MLDs have radius 0, representing one single node. Several MLDs can
be placed into a memory locality domain set; MLDsets address the issue of placement topology
and device affinity. When initially created, memory locality domains are not associated with a
particular node; when one or more MLDs are combined into a MLDset, the placement of the
MLDset is performed based on the user-specified topology information and resource affinity. The
topology can be determined by the system or specified explicitly. The resource affinity can be used
to place the MLDset to a particular hardware device (e.g., a disk or a graphics pipe). After the
creation of MLDs and placement of MLDsets, the application provides hints to the scheduler to
run threads close to where the memory is allocated.

Figure 3.10 shows an example of how the memory management control interface is used to
place processes and memories. The application on the left consists of four processes that share a
single address space. Four processes require placement on at least two nodes. The example also
assumes that each thread accesses 90% of the data exclusively while the remaining 10% is shared
with the neighboring threads. The application also uses a graphics pipe, and it wants the threads
to be placed into an one-dimensional cube. Two memory locality domains are created to control
memory allocation for the two nodes. The MLDs are then grouped into a MLDset. The operating
system could decide to place the MLDset anywhere in the system. However, when placing the

37

90

5

5

90

5

5

Process

Process

Process

Process

90

5

5

90

5

5

Placement

Fallback

PageSize

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

HOW?
Application

WHERE?

Origin System

Migration

Repl.

Placement

Fallback

Migration

Repl.

MLD
Set

MLD 0

Address

space

Address

space

Address

space

Address

space

MLD 1

Graphics
1-D Cube

PageSize

Figure 3.10: Irix memory locality management example

MLDset the application requests proximity to a graphics pipe. The operating system chooses two
nodes in the upper left corner of the 32-processor hypercube and associates the MLDs with two
nodes there. Finally, the application provides hints to the scheduler by using the first (now placed)
MLD for the first two threads and the second MLD for the other two threads. The scheduler will
run threads on the two processors on each of the two nodes while the VM system will allocate
memory on local nodes. The policy modules associated with portions of the virtual address space
will also control other aspects of memory management, such as whether to give preference to
locality or desired page sizes.

38

Chapter 4

Architectural Evaluation of the Origin 2000

Microbenchmarks are used to evaluate basic system parameters such as the speed of various pro-
cessor operations, memory latencies and bandwidths. On an SMP system, there are only a few
basic numbers that characterize the system: memory latency, processor, memory, and bus band-
width; these parameters are independent of the processor and memory locations in the system. On
a ccNUMA system, these values are dependent not only on the locations of the CPU and memory,
but also the type of coherency transaction. For example, accessing an unowned cache line will
have a much lower cost than pulling the cache line out of a remote processor’s cache.

Various microbenchmarks measure memory latencies and bandwidths: the STREAM bench-
mark [27], the memory latency kernel in the lmbench suite [28], and the microbenchmark used by
Hristea et al. [19]. However, there are several problems when trying to use these codes to system-
atically evaluate a large Origin 2000 system. First, these are all separate executables with different
modes of invocation; integrating them in a common test harness would be hard, if not impossible.
Second, with the exception of Hristea’s restart benchmark, the other benchmark codes were not
written with multiprocessor systems in mind. The STREAM benchmark can be modified to use
OpenMP parallel loop constructs. However, placing threads and memory into the desired configu-
ration is quite a challenge. Third, none of the existing benchmark codes are capable of generating
all coherency transactions.

The snbench benchmark suite was written from scratch to help evaluate ccNUMA latencies
and bandwidths. It had to satisfy several goals: first, it should be capable of measuring latencies
and bandwidths of all Origin 2000 coherency transactions generated by the processors. Second,
snbench should be capable of placing threads and memory on arbitrary nodes in the system.
Third, it should be possible to use the benchmark as a part of a larger script that would first evaluate
system configuration and then generate a list of experiments which aim to measure the complete
set of ccNUMA memory characteristics. Fourth, accuracy was considered more important than
portability. The development of snbench revealed several not-so-obvious aspects of the Origin
directory cache coherence protocol, design tradeoffs and the idiosyncracies of the Irix operating
system.

This chapter is organized as follows: Section 4.1 describes the interaction of cache and direc-
tory coherence protocols, and how processor actions translate into directory requests. Section 4.2
gives an overview of the snbench implementation. Finally, Section 4.3 presents data gathered on
a variety of Origin systems.

39

4.1 Protocol Transactions and Coherence States

4.1.1 Composite Cache Coherence State

The basic unit of coherence in the Origin system is a 128-byte cache line. Inside the processor, the
cache line is subdivided into 64-byte blocks in the primary instruction cache and 32-byte blocks
in the primary data cache. The unified secondary cache operates on 128-byte memory blocks. The
processor uses a four-state MESI protocol [30] to manage the cache coherence of the secondary
cache. Each block can be in different MESI states in different processor’s caches. Additionally, the
home node keeps the directory state of all blocks representing a portion of the total system memory
which resides on that node. Conceptually, the composite cache state of each 128-byte block is a
vector containing its directory state (maintained by the home node) and its MESI state (maintained
by all processors in the system). For a system with n processors, the composite cache state vector
for an uncached memory block is {UOWN,In}. A read-only copy of a memory block replicated
in one or more processor’s caches is described with a composite vector of {SHRD, (S|I)n}. A
modified memory block present in the first processor’s cache is described as {EXCL,MIn−1}. In
practice, however, only a small subset of the total system memory is present in processor’s caches.
Clearly, the set of valid composite cache state vectors is only a small set of all possible permuta-
tions.

A processor generates a memory request when it encounters an access fault. A read-access
fault happens when the requestor does not have a valid copy of the cache line in its cache (i.e.,
its MESI state in requestor’s cache is invalid). Both load and store instructions can trigger a read-
access fault. A write-access fault happens when the requestor attempts to retire a store to a cache
line whose MESI state in requestor’s cache is shared. In this case, the requestor needs to obtain
the exclusive ownership of the cache line (by means of an upgrade transaction) before it can retire
the store. At the time of an access fault, the only possible MESI states in requestor’s cache can
be I or S. Read- and write-access faults trigger transactions on the SysAD bus. The only other
MESI state transition that results in a SysAD bus transaction happens when the processor writes
back a modified cache line that was displaced by another cache line. However, this transaction is
a side-effect of a read-access fault encountered by the processor. Writebacks can be avoided by
limiting the size of the test area to fit in the processor’s secondary cache. Writebacks can be forced
on every read-access fault by modifying all lines in the secondary cache beforehand. Other MESI
transitions are not visible externally.

The composite cache coherence states are used by snbench to describe a combination of the
directory state of a cache line, the vector of its MESI states in remote processor’s caches, and (in
some cases) the resulting directory protocol transaction type, as seen by the local processor when it
encounters an access fault. Table 4.1 shows composite cache coherence states used by snbench.
The local and remote columns list possible MESI states in local (requestor) and remote processor’s
caches. The directory column is the directory state of the cache line. The last column gives the
resulting directory transaction (discussed in Section 4.1.3).

The UOWN composite state represents two cases: when the home node keeps the only copy of
the cache line (i.e., the line is not cached anywhere in the system), or when the local processor
requests a cache line after it has silently dropped the line from its cache due to a conflict miss. The
Origin directory protocol allows a processor to silently drop an E line from its cache without noti-
fying the home node. The home node keeps the identity of the current owner as part of the cache

40

state local directory remote directory transaction
UOWN I UOWN|EXCLme I unowned
SHRD I|S SHRD S unowned, invalidate
CEXH I EXCLother E intervention (clean-exclusive hit)
CEXM I EXCLother I intervention (clean-exclusive miss)
DEXD I EXCLother M intervention (dirty-exclusive downgrade)
DEXT I EXCLother M intervention (dirty-exclusive transfer)

Table 4.1: Snbench composite cache coherence states

line directory state. The line can be returned immediately if the dropped line is requested again
by the current owner. (The Origin directory cache coherence protocol uses the EXCLme pseudo-
state to indicate this.) Since the directory protocol transactions are the same for both unowned and
silently-dropped lines, a single snbench composite state covers both cases.

The cache line is in the SHRD state when one or more processors keep a read-only copy of the
cache line in their caches. Remote processors (if any) keep the line in the S state. In the the local
processor’s cache, the line is in the I state on read-access faults, and in the S state on write-access
faults.

The directory protocol uses the EXCLother pseudo-state to describe a case when a local pro-
cessor requests a copy of a cache line whose current owner (at the directory level) is a remote
processor. In the remote processor’s cache, the cache line could be in either E, I, or M state. When
the cache line is in the E state, the remote processor keeps a clean-exclusive copy in its cache; the
CEXH composite state is used to describe this scenario. When the cache line is in the I state, the
remote processor has silently dropped the line from its cache; the CEXM state is is used in this case.
In both cases, the cache line has not been modified and the home node can supply a valid copy to
the requestor. Two different clean-exclusive states were introduced to evaluate the impact of the
R10000/R12000 secondary cache controller, which is located on-chip, while the L2 tags and data
are located off-chip and they are accessed via a separate L2 cache bus.

When the remote processor has a modified copy of the cache line, the directory state of that
line is EXCLother and the MESI state in remote processor’s cache is M. The home node does not
have a valid copy of the cache line. The directory protocol changes the ownership of the cache line
from the remote to the local processor. If the local processor requests an exclusive copy, the remote
processor sends its modified copy directly to the local processor and purges the line from its cache.
In this case, the home node does not have to be updated because the local processor becomes
a new owner (this requires that the local processor keep the line in M state). This transaction is
represented with the DEXT composite state. If the local processor requests a shared copy, the
remote processor downgrades the line to S. However, the cache line is now shared at the directory
level and the home node needs to have an updated copy of the cache line as well. Therefore,
the remote processor needs to send two messages carrying the modified cache line, one to the
requestor, and another to the home node. This transaction downgrades the state of the cache line
from dirty-exclusive to shared and it is represented with the DEXD composite state. The distinction
between these two states was made because the latency and bandwidth results (presented later
in this chapter) indicate a substantial difference between dirty-exclusive downgrades and dirty-
exclusive ownership transfers.

41

4.1.2 Processor Actions and Protocol Requests

The MIPS processors use load and store instructions to transfer data between registers and memory.
Additional prefetch instructions may be used to place data in the cache before it is needed to hide
memory latency. When the processor encounters an access fault, an external SysAD request is
issued by the processor. This request is translated by the Hub processor interface (PI) into a
directory protocol request. When the directory protocol transaction completes, the PI generates a
reply on the SysAD bus. Only then can the processor-initiated action complete. Table 4.2 shows
how various processor actions translate into directory protocol requests.

action request result
load miss READ get a shared or exclusive copy
store miss RDEX get an exclusive copy
upgrade UPGRD invalidate other sharers
writeback WB write a modified line to memory
read prefetch RDSH get a shared copy
write prefetch RDEX get an exclusive copy
instruction fetch RDSH get a shared copy

Table 4.2: Processor actions and protocol requests

Load instructions which miss in the secondary cache are translated into READ directory pro-
tocol requests. The home node returns an exclusive copy of the cache line when the line is in the
UOWN state. If the line is in the SHRD state, the requestor is simply added to the list of sharers. If
the line is owned by a remote processor, its state is downgraded to SHRD. The READ semantics is
intended to speed up the performance of uniprocessor applications. By returning an exclusive (in-
stead of a shared) copy, the processor can modify the cache line without having to obtain exclusive
ownership first.

There are two cases when a store instruction cannot be immediately retired. If the line is not
present in the secondary cache, the processor needs to obtain an exclusive copy. The Hub translates
a store that missed in the cache into a RDEX request. If the store hits in the secondary cache but the
processor has a read-only (shared) copy, an upgrade request is placed on the SysAD bus. SysAD
upgrade requests are converted into UPGRD directory protocol requests. The difference between a
RDEX and an UPGRD request is that in the later case, the processor already holds a valid copy of
the cache line in its cache. The RDEX reply carries the cache line data but the UPGRD reply does
not.

The R10000 processor supports four flavors of prefetch instruction. The MIPSPro compiler
uses read prefetch instructions for right-hand side operands and write prefetch instructions for left-
hand side operands. In other words, a read prefetch is used for an operand that requires a load,
whereas a write prefetch is used for an operand which is the target of a store. The SysAD bus
requests can distinguish between read and write prefetch requests. A read prefetch is translated
into a RDSH directory protocol request while a write prefetch is translated into a RDEX request.1

1A side effect of write-prefetching a cache line on the R10000 is that the processor immediately places the cache
line into the modified state. [56]

42

The other two flavors of the prefetch instruction place a cache line in a particular set of the two-way
set-associative secondary cache and they are not used by the compiler.

The semantics of load and of read prefetch are subtly different. Load requests are translated
into READ requests whereas read prefetches are translated into RDSH requests. When the requested
line is in the UOWN state, the READ request returns an exclusive copy while the RDSH request re-
turns a shared copy. If the processor tries to write to a read-prefetched cache line, it encounters a
write-access fault and the cache line needs to be upgraded from the shared to the exclusive state.
On the other hand, an exclusive line obtained with a load can be upgraded from the exclusive to
the modified state immediately, without incuring a penalty of an external upgrade request. Addi-
tionally, if the read-prefetched line is silently dropped from the cache and then becomes a target of
a store instruction, the resulting RDEX request finds the read-prefetched line in the SHRD directory
state. However, the directory maintains a list of sharers on a per-node basis; read-exclusive requests
cause an invalidation to be sent to the other processor on the node (and thus increase latency). This
anomaly impacts uniprocessor applications that use large arrays first as source and then as desti-
nation (the STREAM benchmark uses arrays in such a fashion). The difference between load and
prefetch instruction semantics is discussed further in Section 6.2.

4.1.3 Directory Protocol Transactions

In the Origin cache coherence directory protocol, the same request can trigger different protocol
transactions, depending on the directory state of the requested cache line, its MESI state in remote
processor’s caches, and the saturation of various message queues. For example, Figure 4.1 shows
six (out of seven) directory protocol transactions triggered by a read-exclusive request. The local
processor is marked as L, the home node as H, and the remote processor as R. The snbench
composite state of the cache line is shown above the home node. Protocol messages are represented
with arrows of different thickness to indicate the size of the message in 128-bit packets, the basic
unit of transfer over the Origin interconnect network. Thin lines are requests and replies that
require only one 128-bit packet. Thick lines carry the contents of the cache line in addition to the
protocol message and consist of nine 128-bit packets.

The first transaction diagram is the unowned transaction: it consists of the RDEX request mes-
sage followed by the ERPC reply from the home node. This is the most basic transaction; its name
is derived from the unowned directory state (hits on unowned lines will always result in a two-
step transaction). Other combinations of a request and directory state that also result in a two-step
transaction include a READ request on a line in the SHRD or EXCLme state, or a WB request on
a line in EXCLme state. This transaction involves only the requestor and the home node; in the
absence of resource contention, the performance of the unowned transaction depends only on the
distance (in network hops) between the requestor and the home node.

When several processors have a read-only copy of the cache line and one of them wants to ob-
tain exclusive ownership, the read-only copies in remote processor’s caches have to be invalidated
before the requestor can retire the store instruction which triggered the write-access fault. Case (b)
shows the resulting invalidate transaction. This is a three-step transaction involving the local pro-
cessor, the home node, and one or more sharer nodes. The Origin directory protocol keeps track of
sharers with a presence bit vector on a per-node basis. The home node sends INVAL messages to
all sharer nodes whose presence bit is set. The home node also supplies the up-to-date copy of the
cache line to the requestor with the ERPLY message. When the Hub on a sharer node receives the

43

HL

RL H

L H R

1:RDEX

2:ERPC

1:RDEX

2:ERPLY

3:IVACK

1:RDEX 2:IRDEX

2:ESPEC 3:XFER

3:EACK

2:INVAL

RL H

1:RDEX 2:IRDEX

2:ESPEC 3:XFER

3:ERESP

(a) unowned transaction (b) invalidate transaction

(c) intervention (clean-exclusive hit or miss) (d) intervention (dirty-exclusive transfer)

UOWN SHRD

CEXH
DEXTCEXM

L H

R

L H

RRR

1:RDEX

2:BINV

2:ERPLY

3
:
I
N
V
A
L

4
:
I
V
A
C
K

1:RDEX

2:BRDEX

3
:
I
R
D
E
X

4
:
E
A
C
K 4:

XF
ER

(e) backoff intervention (clean-exclusive) (f) backoff invalidate transaction

CEXH
CEXM SHRD

Figure 4.1: Directory protocol transactions generated by a RDEX request

INVAL message, the processor interface generates an external invalidate transaction on the SysAD
bus for both processors on that node, even though only one processor may hold a cached copy of
the line. When both processors respond to the external invalidate request, the Hub sends an in-
validation acknowledge (IVACK) to the requestor. The R10000 processor relies on strict memory
consistency; the requestor needs to collect IVACKs from all sharer nodes before the store can be
retired. The Origin interconnect network does not have a broadcast ability. The unicast INVAL
messages are generated sequentially in the network interface at the home node. Once they are in-
jected in the network, the INVAL messages traverse the network and are acted upon by the sharer
nodes in parallel. The performance of the invalidate transaction depends on the distance between
the requestor and the home node, the longest distance between the home node and the sharers, the
longest distance between the sharers and the requestor, and the number of sharers that need to be
invalidated.

When the local processor requests a copy of a cache line which is owned by a remote pro-
cessor, the directory protocol executes one of the several types of intervention transactions. In
Figure 4.1, diagrams (c) and (d) show two possible intervention scenarios. In both cases, when the
RDEX request reaches the home node, the directory state of the cache line is EXCL and the owner
of the cache line is the remote processor (this is denoted by the EXCLother directory pseudo-state).
The home node sends a speculative reply (ESPEC) to the requestor, and an intervention-exclusive

44

request (IRDEX) to the remote processor. The home node also changes the directory state of the
cache line from EXCL to BUSYE, temporarily locking the cache line until the transaction is com-
pleted. The scenarios differ depending on the MESI state of the cache line in remote processor’s
cache.

If the remote processor has a clean copy, or if the processor has silently dropped the cache line,
the local processor can use the data it received in a speculative reply. The remote processor sends
the EACK acknowledgement to the requestor, and the XFER directory revision message to the home
node. The requestor completes the transaction when it receives the acknowledgement. The home
node changes the cache line state back to EXCL (with the local processor as the new owner) when
it receives the XFER message. Diagram (c) illustrates such a clean-exclusive intervention trans-
action. Even though snbench uses two different composite cache states, CEXH and CEXM, for
clean-exclusive transactions, the directory protocol transaction is the same in both cases. The only
difference is that the MESI state of the cache line in remote processor’s cache is E in the former
case, and I in the later. The performance of clean-exclusive intervention transactions depends on
the distance between the participating nodes, and the SysAD timing when the local and remote
processors reside on the same node.

If the remote processor has a modified copy of the cache line, the cache line data sent with
the speculative reply is invalid. The remote processor sends an up-to-date copy to the requestor
with the ERESP response and the requestor discards the speculative data. The remote processor
also sends the XFER directory revision message to the home node, which concludes the transac-
tion. This scenario, illustrated in diagram (d) in Figure 4.1, is an example of the dirty-exclusive
ownership transfer. If the local processor requested a shared copy of the cache line (by using the
READ or RDSH directory protocol request), the resulting dirty-exclusive downgrade (not shown
in Figure 4.1) is similar to the ownership transfer, except that the final state of the cache line at
the directory level is SHRD instead of EXCL, and the remote processor sends the SHWB (shar-
ing write-back) instead of the XFER directory revision message to the home node. However, the
SHWB message carries cache line data whereas the XFER message does not. In snbench exper-
iments, the DEXT composite state indicates dirty-exclusive ownership transfers while the DEXD
state indicates dirty-exclusive ownership downgrades. Just like clean exclusive transactions, the
performance of dirty-exclusive transactions depends primarily on the distances between the three
participants. However, the speculative reply, discarded by the local processor, wastes network
bandwidth and possibly local processor’s SysAD cycles. Also, the fact that the remote processor
needs to send two copies of the cache line instead of one has an impact on the performance of
the dirty-exclusive downgrade, especially when the local and remote processors are located on the
same node.

The unowned, intervention, and invalidate transactions are the basic transaction types in the
Origin directory protocol. The protocol supports two additional transaction types, variants of the
intervention and invalidate transactions. When the home node detects the possibility of a deadlock,
the Origin directory protocol reverts to a strict request/reply protocol. Instead of forwarding the
intervention or invalidate requests, the home node sends a reply to the requestor instructing it to
perform the intervention or invalidate by itself. In Figure 4.1, an invalidate transaction (b) becomes
a backoff invalidate transaction (f). In addition to the cache line data sent with the ERPLYmessage,
the home node sends the backoff-invalidate (BINV) message to the local node which carries the
sharer presence bit vector. The local node then sends out individual INVALmessages to the sharers
and waits until it receives all the IVACK replies. In the same manner, a clean-exclusive interven-

45

tion transaction (c) becomes a backoff clean-exclusive intervention transaction (e). The home node
sends the BRDEX instead of the ESPEC message, which includes the identity of the current owner,
as well as the speculative copy of the cache line. The local node then sends the IRDEX request to
the remote node and waits until the remote responds with the EACK. If the remote processor has a
modified copy of the cache line, it would respond with the ERESP message, resulting in a backoff
dirty-exclusive transfer. Similarly, if a shared copy of the cache line is requested, the transaction
would become a backoff dirty-exclusive downgrade. The backoff interventions and invalidations
are four-step transactions. Their performance is worse than their non-backoff counterparts. Back-
off transactions are hard to generate reliably because they require that the output queue at the home
node is almost full. The results from Chapter 6 indicate that it requires at least seven or more pro-
cessors continuously invalidating cache lines on a single home node to detect a small percentage of
backoff invalidate transactions. Backoff interventions are even harder to generate reliably. While
snbench can be used to generate backoff transactions, a separate tool is required to measure the
fraction of backoff transactions. Section 6.3 presents some experimental results.

4.2 Snbench Implementation Overview

The snbench suite consists of a C program and a set of Perl scripts. The snbench executable
takes care of thread and memory placement and executes experiments that measure memory la-
tencies and bandwidths. The snbench executable can be used either standalone or in combi-
nation with a front-end Perl script. This script determines system topology and generates a shell
script combining several snbench invocations with different parameters designed to evaluate lo-
cal memory performance, remote latencies and bandwidths, and the characteristics of intervention
and invalidate transactions. When this shell script is executed, the output is captured in a file;
another Perl script parses the output files, extracts data, and prints desired values in tabular form.

The coherence transactions discussed in previous sections involve three participants: the local
processor that issues requests, the home node, and zero or more remote processors. The snbench
executable allocates a pool of memory on the home node and then spawns one or more local and
remote threads. The local threads allocate the memory for latency and bandwidth experiments
from this pool. The remote threads touch or modify the allocated memory to place the cache lines
in the desired state; the local thread executes one of the latency or bandwidth measurement kernels.
The main thread waits until all local threads complete before printing results.

Local threads execute one or more iterations of the microbenchmark and measure the time it
takes for each iteraction. Local threads are sometimes called requestor threads because they are
the originators of protocol requests: cache misses and writebacks caused by requestor threads are
translated into protocol requests directed at the home node. Each local thread may use one or
more remote threads to place cache lines in the desired cache state on the remote processor before
each iteration of the test. At the end of execution the main thread computes and prints minimum,
maximum, median, average and standard deviation for test results generated by each local thread.
All local threads are synchronized to start executing simultaneously. Local and remote threads are
bound to a particular processor specified by the command line parameter. Threads can be bound
to a node as well; in this case, the operating system will schedule the thread on any processor on
the designated node.

46

4.2.1 Measuring Memory Bandwidth

The snbench suite is capable of measuring several types of memory bandwidth. There are five
different bandwidth experiments, each designed to generate a different stream of protocol requests.
All experiments are based on two kernels, a simple reduction loop and a fill loop, shown in Fig-
ure 4.2.

A fixed stride of 16 double words (128 bytes) was chosen to reduce the loop overhead and to
eliminate reuse of the data in secondary cache lines; each pipelined access will hit on a different
cache line. The kernels are actually written in Fortran instead of C. They are compiled with
the highest level of compiler optimization; the compiler uses software pipelining and unrolls the
loops to achieve the best memory performance. The reduce loop actually comes in two versions,
one using prefetch instructions and the other using loads. The prefetched reduce loop generates
RDSH requests, and the nonprefetched loop generates READs. Table 4.3 summarizes the bandwidth
experiments.

experiment kernel request
bw-read sum READ
bw-rdsh sum RDSH
bw-rdex fill RDEX
bw-zero fill RDEX, WB
bw-upgrd fill UPGRD
bwmp-read sum READ

Table 4.3: Memory bandwidth experiments

The bw-read and bw-rdsh experiments use the reduce loops to evaluate memory band-
width. The bw-rdsh kernel is compiled with prefetch instructions enabled; the compiler will
schedule read prefetch instructions before the loads that compute the sum; this results in lines
requested through RDSH directory transactions. The bw-read kernel is compiled with prefetch
instructions disabled; the loads issued by the processor will be translated into READ requests.

The bw-rdex and bw-zero experiments are similar: both use the fill kernel to modify cache
lines in the test array. The store instructions are translated into RDEX directory requests; however,
when the array size exceeds the size of the L2 cache, each store will displace a dirty line and
generate a WB request. The bw-rdex experiment limits the size of the test array to no more than
the size of processor’s L2 cache; this guarantees that no writebacks are generated—dirty lines stay
in the cache after the end of the experiment. The bw-zero experiment uses array sizes larger
than the L2 cache size. Additionally, the experiment modifies a part of the array before it starts
measuring elapsed time. The size of the initially modified array is the same as the L2 cache size;
this step ensures that all L2 cache lines are dirty. When the timed section of the loop is executed,
each store will displace a dirty cache line, and generate one WB and one RDEX request.

Unlike the bandwidth experiments described so far which operate on cache lines in any state,
the bw-upgrd experiment can operate only on lines in SHRD state. The local thread places a
read-only copy of the test array in its L2 cache, as do sharer threads running on other nodes. When
the local thread executes the fill loop, the store instructions hit on shared lines in the processor’s
L2 cache, resulting in UPGRD protocol requests. The test array is limited to the size of a local

47

processor’s L2 cache; this ensures that all lines are placed in the local processor’s cache and the
subsequent store instructions will be sent out as UPGRD requests. We expect that the resulting
bandwidth should be higher than either bw-rdex or bw-zero because the upgrade transactions
do not carry cache line data.

All bandwidth experiments can have more than one local thread timing the benchmark kernel.
However, the local threads are synchronized only at the start. While they will start the clock at
the same time, they may end at different times. This poses a problem when we want to measure
the total bandwidth of a common system resource, such as the SysAD bus, the memory controller,
or a shared link. Initially, all threads participate in saturating the resource. If the bandwidth
of the shared resource is not evenly distributed across threads, they will take different amounts
of time to read or modify cache lines in their portion of the test array (all threads operate on
arrays of equal size). The bwmp-read experiment is used to solve the problem of local threads
terminating at different times. It is similar to the bw-read experiment; however, the first thread
that finishes processing its portion of the test array signals all other threads to stop the execution.
The shared resource is evenly utilized, and its effective bandwidth can be computed by adding the
bandwidths reported by individual threads. The bwmp-read experiment was used to measure
effective bandwidth of the SysAD bus, the memory interface and the interconnect links.

4.2.2 Measuring Back-to-Back Latency

The first set of latency experiments is similar to the memory latency benchmark in McVoy’s
lmbench suite [28]. There are three back-to-back latency experiments, all based on the idea
of chasing a linked list of pointers. A simplified version of the back-to-back measurement code is
shown in Figure 4.3. Function init constructs a circular list of n elements, where each element
is separated by stride bytes. Functions walk and modify traverse the circular list and generate
READ or RDEX requests, respectively. The back-to-back latency is computed as the time to traverse
the entire list divided by the number of elements in the list.

Table 4.4 lists back-to-back latency experiments. The lmbench-read experiment uses the
walk function to traverse the list. Each load is dependent on the result of the previous load, which
guarantees that no two memory accesses overlap. Experiments lmbench-rdex and lmbench-
upgrd traverse the list with the modify function. This function is similar to walk; however, the
first access to the cache line is a store, not a load. Instead of a READ, the Hub will issue a RDEX or
an UPGRD request, depending on the state of the cache line in local processor’s cache.

experiment kernel request
lmbench-read walk READ
lmbench-rdex modify RDEX
lmbench-upgrd modify UPGRD

Table 4.4: Back-to-back memory latency experiments

Just like the bw-upgrd experiment, the lmbench-upgrd experiment is meaningful only for
lines in the SHRD state. The local and sharer threads first touch all cache lines where the circular
list is stored, bringing them into the L2 cache in shared state. The local thread then measures the

48

1 double sum(double a[], int n)
2 {
3 double s = 0.0;

4 for (i=0; i < n; i += 16)
5 s += a[i];

6 return s;
7 }

8 void fill(double a[], int n)
9 {

10 for (i=0; i < n; i += 16)
11 a[i] = 0.0;
12 }

Figure 4.2: Kernels used in bandwidth experiments

1 struct line {
2 struct line* next;
3 double dummy;
4 };

5 void init(char* array, int stride, int n)
6 {
7 struct line* p = array;

8 while (--n > 0) {
9 p->next = (char*) p + stride;

10 p = p->next;
11 }
12 p->next = array;
13 }

14 void walk(struct line* p, int steps)
15 {
16 while (--steps >= 0)
17 p = p->next;
18 }

19 void modify(struct line* p, int steps)
20 {
21 while (--steps >= 0) {
22 p->dummy = 0.0;
23 p = p->next;
24 }
25 }

Figure 4.3: Kernels used in back-to-back latency experiments

49

execution of the modify kernel. Since the first access to the line is a store, the line needs to be
upgraded to the exclusive state with the UPGRD request. In the local thread, the size of the circular
list in the experiment is limited to the size of the L2 cache to avoid writing dirty lines back to
memory.

Two techniques are used to eliminate cache line reuse. First, each element is visited at most
once, even though the list is circular. Both the R10000 and R12000 use a random replacement
strategy for the L2 cache; it is possible for a data item to stay in the two-way set-associative cache
if the array does not fit in the cache. Second, the cache contents are invalidated between iterations
of the experiment. We used R10000 hardware performance counters to verify that the kernels
generate the expected number of cache misses.

The code fragments in Figure 4.3 are written in pseudo-C. The functions are actually manually
unrolled 32 times and written in MIPS assembly, not just to ensure the highest possible accuracy
but also to avoid compiler optimizations. For example, the modify kernel written in C would
never result in the desired assembly code because the compiler would promote the load before the
store.

4.2.3 Measuring Restart Latency

The back-to-back latency discussed in the previous section gives a worst-case latency estimate. If
there are instructions following a load that do not miss in the cache or do not generate memory
accesses, the transfer of the remainder of the cache line could effectively be hidden from the
application. The restart latency gives the best-case latency estimate. If there is no contention for
shared resources, the pipeline can be restarted much faster.

Conceptually, the restart latency is computed by creating a series of walk functions similar to
the one shown in Figure 4.3. Each function in the series adds more work instructions following
the load (i.e., the pointer dereference). These work instructions must be dependent on the data
returned by the load, but they should not generate any memory traffic. The algorithm works by
increasing the amount of processor-only work on each iteration until it hits a threshold where the
dummy work following the load takes longer than the transfer of the rest of the cache line into the
L2 cache. After the threshold is found, the algorithm computes the time it takes to execute only the
work instructions (done by constructing a one element circular list and having the function spin
in the cache). The restart latency is computed by subtracting pure work time from the back-to-
back time. To ensure accuracy of the restart benchmark, the increase in the amount of work on
each iteration should be as small as possible. It is very hard to achieve this goal when the kernel
is written in a high-level language such as C. The code becomes dependent on the version of
the compiler and the optimization levels; even then, it is not possible to use loops for idle work
because all loops need branches and branches are not predictable. The work steps must be added
manually and the loops unrolled by hand. We solved this problem by writing a Perl script that
generates a series of walk and modify kernels in assembly language. Each successive kernel
has an additional add instruction following the load; each add increases the work by one processor
cycle. The back-to-back experiments use the first pair of functions in this series where no work
instructions are following the loads.

Figure 4.4 illustrates the difference between the back-to-back and restart latency. The x-axis
indicates the number of dependent work instructions following the load. The y-axis is the time
(in processor cycles) required for each step. The samples were taken on a system with 250 MHz

50

R10000 processors. The 4 MB secondary cache bus was synchronous with processor core.2 The
SysAD bus was running at 100 MHz. The plots labelled L1 and L2 are both linearly increasing
with L2 slightly above L1. The L1 plot starts at two core clock cycles for loads only; each add
instruction increases the timing by one clock cycle. The L2 plot starts at 8 cycles and increases at
one core cycle per add. This confirms our expectation that a load satisfied in the secondary cache
takes six cycles. The back-to-back latency plot starts with a flat line which covers the section where
the back-to-back latency dominates the total work time; all add instructions following the load are
executed before the L2 bus completes transferring the cache line from SysAD into L2. After the
first spike (which is due to L2/SysAD timing), the back-to-back plot monotonically increases in
pronounced jumps. The jumps reflect the timing needed to synchronize processor core and SysAD
bus timings; each jump is five core clocks (two SysAD bus cycles). The restart plots the difference
between back-to-back and L1 plots.

The Impact of L2 Cache Bus Speed

The processor core and its secondary cache bus do not have to run at the same frequency. In fact,
the 250 MHz R10000 systems are the only ones with synchronized core and L2 cache frequencies.
All other Origin systems use a 3 : 2 core to cache bus clock ratio.

When the core and cache bus run at different speeds, the data from a cache miss satisfied in
the secondary cache will not always be returned in the same number of processor cycles. For
example, on a 195 MHz R10000 with the 130 MHz secondary cache bus speed, the data will be
returned in either 8, 9 or 10 processor cycles. Figure 4.5 shows latency plots for such system.
Instead of a smooth line in Figure 4.4, the L2 hit curve is now a step function that increments
by three cycles every three work steps. The back-to-back plot shows the effects of L2 cache bus
superimposed on the SysAD bus timing. At 25 work steps, the back-to-back latency jumps from 93
to 97 processor cycles, drops back to 93 cycles at 26 instructions and climbs back to 97 cycles at
27–30 instructions. From then on, we can consistently observe two SysAD cycle latency increase
every additional six instructions, with a drop to the previous level on the second sample in the six
instruction cycle.

The Impact of R12000

The difference between back-to-back and restart latencies is quite significant. Hristea et al. [19]
report 140 ns or about 30% of the back-to-back-latency. Recall that the increased latency of back-
to-back loads is due to the L2 bus being occupied while the rest of the cache line is transferred from
SysAD to L2. While the L2 bus is busy, the processor cannot access L2 tags to determine whether
the next load missed in L2 cache and thus cannot issue the next request on the SysAD. To minimize
this gap, the designers of R12000 changed the cache line transfer algorithm by transferring the
128 byte cache line in four 32 byte blocks; after each block, the R12K can preempt cache line
transfer to perform a L2 tag check.

This modification reduced the latency of back-to-back loads. It also changes the latency plots.
Figure 4.6 shows latency plots for a 300 MHz R12000 system. The secondary cache bus runs at
200 MHz and the SysAD at 100 MHz. The L1 plot is the same as before: it starts at two cycles and

2This combination of processor type, core frequency, secondary cache speed and size will be abbreviated as
R10K 250/250/4.

51

0 20 40 60 80

work steps

0

50

100

150

200

la
te

nc
y

(p
ro

ce
ss

or
 c

lo
ck

s)

L1
L2
b-to-b
restart

Figure 4.4: Back-to-back and restart latencies on a R10K 250/250/4 system

0 20 40 60 80

work steps

0

50

100

150

200

la
te

nc
y

(p
ro

ce
ss

or
 c

lo
ck

s)

L1
L2
b-to-b
restart

Figure 4.5: Back-to-back and restart latencies on a R10K 195/130/4 system

0 20 40 60 80

work steps

0

50

100

150

200

la
te

nc
y

(p
ro

ce
ss

or
 c

lo
ck

s)

L1
L2
b-to-b
restart

Figure 4.6: Back-to-back and restart latencies on a R12K 300/200/8 system

52

increases one processor cycle for each add instruction. Just like R10000 running at 3 : 2 processor
to cache speed ratio, the L2 plot is a step function; the data is returned from L2 in either 9 or
10 cycles. The back-to-back plot reveals the change in cache line transfer algorithm: there are two
large steps following the initial flat portion of the plot; the plot then changes into a series of smaller
steps superimposing the L2 cache over the SysAD bus timing similar to the one in Figure 4.5.

Restart Latency Algorithm

The algorithm used in [19] computed the restart latency by progressively increasing the amount of
work following the load until the back-to-back time started to increase. With different processor
behaviors dependent on different processor generations and different cache clock speeds, detecting
the knee of the back-to-back latency curve and computing the restart latency at that point does not
report correct results. A different restart algorithm is needed to handle different situations.

The restart plots in Figures 4.4–4.6 are computed as the difference between back-to-back and
L1 latencies. They all start with a steep descent and end in a horizontal saw-like pattern that reflects
the SysAD timing. Instead of looking for the knee of the back-to-back curve, the restart algorithm
in snbench computes restart latency as the difference between the back-to-back and L1 times.
On each iteration, the algorithm adds one additional work step. The algorithm terminates when the
average restart latency computed in a moving window of specified length stays within a boundary
of the moving average for a sufficient number of work steps. Default values for the moving window,
bounds and stable sequence are 13 iterations, ±5 ns and 19 iterations, respectively. The defaults
were chosen to work sufficiently well for the whole range of systems where snbench was tested;
they can be changed through command line options. The search will also be terminated when the
algorithm runs out of work functions.

When the average restart latency stabilizes, the restart plot looks like a series of more or less
broken saw tooths. As mentioned before, this mode reflects the combined SysAD and cache timing.
Which restart value should be reported as the restart latency, the moving average or the (absolute)
minimum? The average value reflects the cost of “the average” load in isolation; i.e., if there is no
contention for the L2 bus, the average time takes into account the fact that the load miss timing
depends on L2 and SysAD timing. However, it is not clear that the load misses will not suffer
from L2 bus contention. Since the whole idea behind the restart latency is to give an estimate of
the best-case latency, it seems more appropriate to chose minimum restart time as the (reported)
restart latency. The snbench will report the minimum latency observed in the stable window as
the restart latency; it can also report window median, average and maximum times.

4.3 Results

This section presents snbench results gathered on a variety of Origin systems. Section 4.3.1 gives
local latency and bandwidth results. These values give a baseline system performance, where all
ccNUMA effects are ignored. If the application placed its data such that there were no remote
accesses, it would observe the local latencies and bandwidths. This section also presents improve-
ments due to the increase of processor speed and changes in its microarchitecture, which were
introduced in several generations of the Origin 2000 systems. Section 4.3.2 analyzes the impact
of accessing data in remote nodes, the most important aspect of the ccNUMA architecture. The

53

distance between the requestor and the home node is not the only parameter that affects the mem-
ory performance. Another important parameter is the directory transaction type. Section 4.3.3
evaluates intervention transactions, where cache line ownership is transferred from one processor
to another. Section 4.3.4 evaluates invalidation transactions, where a processor invalidates shared
copies before it can assume an exclusive ownership of a cache line.

Table 4.5 presents the systems that were used to collect microbenchmark data. System bitmap
is an example of the first generation of the Origin2000 system based on 195 MHz R10000 pro-
cessors; the Hub runs at 97.5 MHz to accomodate the 2 : 1 processor/SysAD clock ratio. The
follow-on system, bootleg, uses a linear shrink of the R10000 processor running at 250 MHz;
in addition to faster processors, it also increased the Hub frequency to 100 MHz for a 5 : 2 clock
ratio. The 250 MHz systems have synchronized processor and L2 cache interface speeds; all other
systems run the cache interface at a 3 : 2 ratio. The third generation of Origin systems shipped
with the R12000 processor featuring enhancements in the microarchitecture and a higher clock
frequency (300 MHz). The last member of the Origin2000 family is based on a shrink of the
R12000 processor running at 400 MHz. All systems based on the R12000 use a 100 MHz Hub
frequency.

system CPUs Hub comment
bitmap 16 R10K 195/130/4 97.5 MHz first generation
bootleg 32 R10K 250/250/4 100 MHz 1 : 1 L2 cache speed
arctic 64 R12K 300/200/8 100 MHz R12000 CPU
bwana 16 R12K 400/266/8 100 MHz last generation
stinger 128 R12K 300/200/8 100 MHz 128P system

Table 4.5: Origin 2000 systems used in experiments

Contrary to the incremental changes in processor and Hub frequency, the system interconnect
has not changed through the life of the Origin systems. The router core runs at 100 MHz and
the link signalling runs at four times the router speed. The backplane connecting the node to its
nearest router runs at 390 MHz. All the systems up to 64 processors use regular routers. As shown
in Figure 3.6, systems with more than 64 processors connect 32P hypercubes with a metarouter;
stinger is an example of such an Origin system.

The Origin system scales from 2 to 512 processors. Up to 128P, the directory cache coherence
protocol uses a 64-bit vector to keep track of the sharers of the cache line. Beyond 128P, the
directory employs a coarse-grained vector where each bit represents 8 nodes. Also, the metarouters
for 256P and 512P systems are different from the metarouter for the 128P system. Unfortunately,
we did not have access to systems larger than 128P.

4.3.1 Local Transactions

This section presents latency and bandwidth results for four generations of Origin 2000 systems.
We start with local results obtained on the first generation of the Origin systems, similar to the
one used by Hristea et al. [19] (a R10K 195/130/4 system). We continue with Origin gener-
ations that featured either a processor speed bump (R10K 250/250/4 and R12K 400/266/8), or

54

tweaks in the processor microarchitecture (R12K 300/200/8). The local results are comparable
to a dual-processor SMP systems—all communication is limited to a single node. However, the
cache coherence between the two peer processors on each node still involves the directory protocol
transactions. The latency and bandwidth results are presented for each composite directory state
and the protocol request issued.

Table 4.6 shows local results measured on a 195 MHz R10000 system. The back-to-back and
restart latency results were computed as the minimum value over ten iterations of the experiment,
whereas the bandwidth results were computed as the maximum value over ten iterations of the
experiment. All experiments were timed with a high-precision (800 ns) cycle counter. The standard
deviation for latency results of ten iterations of the experiment was less than 0.5 ns for READ
requests on UOWN, SHRD, and CEXM states, and less than 2.5 ns for READ requests on CEXH,
DEXD, and DEXT states, and RDEX requests on all states (higher variation for these results is due
to the smaller size of the test data, which must fit in the processor’s secondary cache). The standard
deviation for bandwidth results was less than 0.3 MB/s for READ and RDSH requests on UOWN,
SHRD and CEXM states, and less than 3 MB/s for other request/state combinations. Even for results
with higher measured standard deviation, the median and average results for those experiments
were usually found to be close to the value reported here, which suggests that a temporary system
activity during the measurement produced an outlier. Similar standard deviations were observed
during experiments on other systems whose results are presented in this section.

bitmap back-to-back (ns) restart bandwidth (MB/s)
state READ RDEX UPGRD READ READ1 RDEX zero UPGRD

UOWN 476 516 323 518 480 266
SHRD 476 895 707 323 517 311 205 423
CEXH 700 742 613 343 317
CEXM 702 742 616 337 317 211
DEXD 1022 857 176
DEXT 1083 8802 174
1 Identical results to RDSH.
2 This experiment used RDEX request.

Table 4.6: Local results for a R10K 195/130/4 system

The first four columns in Table 4.6 show restart results for various combinations of directory
requests and cache line states. The READ results for UOWN lines estimate local memory latency.
The results suggest that in the absence of the SysAD bus and memory contention, the load latency
is 323–476 ns. The 153 ns difference is due to the contention for the processor L2 bus: the best case
is estimated by measuring the restart latency while the worst case is estimated by measuring the
back-to-back latency. When comparing READ latencies for various coherence states, we see that
the UOWN and SHRD results are identical, while the latencies for other coherence states are much
higher. This is due to different directory transactions involved in each case. Read requests for
SHRD lines result in identical transactions as read requests for UOWN lines (unowned transactions).
On the other hand, clean-exclusive and dirty-exclusive intervention transactions involve the other
processor on the local node, resulting in a much higher latency. The intervention cost is very high

55

because the SysAD bus is multiplexed between the two processors on the node.
The RDEX latency for SHRD lines is almost twice as high as the READ latency. This difference

is due to the cost of the invalidate transaction, which is required when the processor requests the
exclusive ownership of the cache line with the RDEX request. In local SHRD experiments, both
processors on the node first touch all cache lines in the test array with load instructions. Then one
processor waits while the other processor measures the time it takes to chase the linked list. In the
RDEX case, a dummy store on each cache line is performed before dereferencing the pointer, which
results in an external RDEX transaction. Since the R10000 processor uses strict memory ordering,
the store cannot be retired until the cache line is invalidated in the other processor’s cache. This
involves an invalidation transaction on the SysAD bus and a coherency response from the other
processor, which compete with the data response transaction to the requestor. Compared to the
RDEX latency, the UPGRD latency is much lower. In this case, the processor already holds a valid
copy and it only needs to wait until the other processor invalidates its copy before the transaction
is completed.3

Surprisingly, the RDEX latencies for UOWN, CEXH and CEXM lines are ≈ 40 ns higher than
the corresponding READ latencies, even though the directory transactions are the same. This phe-
nomenon is again due to the contention for the processor L2 bus. The RDEX requests are generated
by modifying each element in the linked list before dereferencing the pointer. The size of the linked
list is chosen not to exceed processor L2 size to avoid writebacks to main memory. However, the
processor needs to write the modified 32-byte L1 cache lines back to L2. The L1 writebacks will
contend for the L2 bus together with the tag check for the next item in the linked list. After the L2
bus becomes free, the L2 writeback is performed first, followed by the tag check, further delaying
the next RDEX request on the SysAD bus. Faster cache bus speed and the modifications in the
secondary cache controller introduced with R12000 have eliminated this anomaly.

The bandwidth results in Table 4.6 show the same tendencies as the latency results. The highest
bandwidth (518 MB/s) is achieved with READ requests on UOWN lines. Composite cache states,
which result in intervention and invalidate transactions, cause a significant (albeit not as high)
decrease in achieved bandwidth. Similarly, comparing READ and RDEX bandwidths reveals a slight
decrease due to the contention for the processor L2 cache bus. We also measured the bandwidth
results for RDSH requests; as expected, we found them to be identical to the READ results.

Table 4.7 summarizes local latencies and bandwidths measured on an Origin system with
250 MHz R10000 processors. Compared to the 195 MHz results shown in Table 4.6, there is a
decrease in back-to-back and restart latencies. The bandwidth results have improved because of
the higher processor core frequency and the higher Hub frequency (the SysAD bus now runs at
100 MHz instead of 97.5 MHz). The RDEX latency increase is smaller compared to the 195 MHz
systems. Again, this is due to the faster L2 cache bus.

The local results for a 300 MHz R12000 system are summarized in Table 4.8. The microarchi-
tectural changes in the L2 cache controller help reduce back-to-back latencies. The back-to-back
READ and RDEX latencies on unowned lines are now equal: the R12000 can overlap L2 line fill
from SysAD with the L1 writeback. However, the L2 bus occupancy seems to be a problem with
the CEX latencies. The restart latencies are slightly higher than on 250 MHz systems; since both
systems run 100 MHz Hubs, the difference can be attributed to the 3 : 2 secondary cache ratio. The
READ bandwidths have improved because of the higher core clock frequency. However, the RDEX

3See Section 4.3.4 for a discussion of UPGRD latencies.

56

bootleg back-to-back (ns) restart bandwidth (MB/s)
state READ RDEX UPGRD READ READ RDEX zero UPGRD

UOWN 425 460 285 548 494 273
SHRD 425 745 603 283 548 353 235 432
CEXH 682 683 565 360 353
CEXM 683 684 571 360 354 210
DEXD 983 787 180
DEXT 966 782 178

Table 4.7: Local results for a R10K 250/250/4 system

and zero bandwidths on shared and clean-exclusive lines are actually slightly lower compared to
the 250 MHz system, probably because of the Hub and processor timing interactions.

arctic back-to-back (ns) restart bandwidth (MB/s)
state READ RDEX UPGRD READ READ RDEX zero UPGRD

UOWN 384 385 298 558 513 266
SHRD 384 607 341 298 558 326 217 384
CEXH 681 713 577 360 336
CEXM 683 714 584 354 336 234
DEXD 978 800 179
DEXT 897 818 181

Table 4.8: Local results for a R12K 300/200/8 system

Table 4.9 shows local results for a 400 MHz system. The restart latency has improved and is
now about 5 ns lower than the restart latency for 250 MHz R10000 systems. Increasing the clock
frequency yields diminishing returns, because the latency bottleneck is now the memory interface.
The latencies for CEX lines are the same for READ and RDEX requests due to the faster L2 cache
bus. Other results are comparable to the 300 MHz system.

bwana back-to-back (ns) restart bandwidth (MB/s)
state READ RDEX UPGRD READ READ RDEX zero UPGRD
UOWN 384 383 279 553 535 264
SHRD 383 637 329 279 553 329 223 398
CEXH 680 682 560 368 340
CEXM 682 682 564 368 338 229
DEXD 978 784 179
DEXT 881 813 182

Table 4.9: Local results for a R12K 400/266/8 system

57

Comparing System Generations

Table 4.10 summarizes the important differences between several generations of the Origin node
boards. The first column is the back-to-back READ latency, followed by the restart latency; the
∆ column is the restart penalty (the difference of back-to-back and restart latencies). The 1P
column shows the sustained uniprocessor read bandwidth. The SysAD entries give the sustained
dual-processor read bandwidth, followed by the ratio of the SysAD over the single processor band-
width. The memory entries give the cumulative bandwidth of four threads placed on four different
nodes all issuing READ requests to a single node; the ratio following the bandwidth numbers is
again computed as the total memory bandwidth over a single processor’s.

READ latency (ns) READ bandwidth (MB/s)
system b-to-b restart ∆ 1P SysAD memory

R10K 195/130/4 476 322 154 518 555 1.07 604 1.17
R10K 250/250/4 425 285 140 548 560 1.02 624 1.14
R12K 300/200/8 384 297 86 559 566 1.01 617 1.09
R12K 400/266/8 384 280 104 553 563 1.02 612 1.10

Table 4.10: A comparison of local results

The back-to-back latency numbers decrease with successive generations. Starting with the
300 MHz systems, the latency is limited by the speed of the Hub instead of the speed of the
processor. The restart latency for 400 MHz systems is slightly better compared to the 300 MHz
systems, a result of the faster processor clock and the cache interface. Similar effects can be ob-
served with single-processor bandwidth numbers: the values increase with faster processor speeds,
almost to the point of using up the full SysAD bandwidth. The SysAD and memory bandwidths
were obtained with the bwmp-read experiment. Even though this experiment was intended to
evaluate the cumulative bandwidth of several threads issuing memory requests, the results were not
as accurate as the other results in this section. The SysAD results varied less than 1%; the memory
results were noisier, varying between 3-5% from the average shown in Table 4.10.

4.3.2 Remote Transactions

The most important difference in accessing memory on a conventional SMP system and on a
ccNUMA system is that the memory on a ccNUMA system is divided across multiple nodes. Load
and store instructions will transparently access a memory location on a remote node; however, the
latency will be significantly different than when the memory location is in the local node.

Table 4.11 shows how latency and bandwidth depend on the distance between the requesting
processor and the home node. The data were measured on a 64 processor system with 300 MHz
R12000 processors. The values shown in the latency column are the back-to-back latencies for
lines in unowned state. The read and zero columns give bandwidths for sum and fill kernels
from Figure 4.2; all cache lines are in unowned state. The transaction is a simple request/reply pair.
There are no invalidations or interventions; the only variable is the distance between the requestor
and the home node. The values in Table 4.11 are averages for all nodes at the same distance from
the home node.

58

arctic b-to-b latency READ zero
hops nodes ns incr MB/s decr MB/s decr

0 1 385 558 266
1 1 721 87% 446 20% 258 3%
2 8 831 116% 427 24% 245 8%
3 12 946 146% 392 30% 237 11%
4 8 1062 176% 362 35% 230 13%
5 2 1179 207% 335 40% 219 18%

Table 4.11: Remote results on a 64P Origin R12K 300/200/8

There is a relatively large latency increase when the memory location is one router hop away.
Latencies two or more hops away increase as a linear function of the number of router hops. Even
though the remote latencies increase quite significantly, the remote bandwidth results show less
sensitivity to the distance from the home node. This can be attributed to the overlap of multiple
outstanding misses which hide some of the remote latency, combined with the small variances in
the SysAD bus timings. Remote stores are even less sensitive to the distance to home node. Each
store instruction displaces a dirty line in the cache, generating two directory requests: a writeback
of the displaced line and an exclusive read of the missed cache line. While the bandwidth of writes
is almost half the bandwidth of reads, the decline is not as steep.

Systems with a Metarouter

The nodes in Origin 2000 systems up to 64 processors are connected in a multidimensional hyper-
cube. Larger systems are organized in a fat hypercube where three or more 32-processor hyper-
cubes are linked together with a metarouter. Table 4.12 shows remote latencies and bandwidths
collected on a 128-processor system.

stinger latency READ zero
hops nodes ns incr MB/s decr MB/s decr

0 1 384 557 266
1 1 763 99% 437 22% 232 13%
2 6 914 138% 418 25% 235 12%
3 12 1093 184% 365 34% 224 16%
4 20 1264 229% 327 41% 215 19%
5 18 1424 270% 298 47% 203 24%
6 6 1575 310% 274 51% 192 28%

Table 4.12: Remote results on a 128P Origin R12K 300/200/8

The 128-processor system is physically larger and the cables connecting nodes to metarouters
are longer. Compared to the 64-processor system, we expect the remote latencies to be 5–10 ns
higher due to longer cables which are used in the 128P systems. However, the latencies are about
50 ns higher, even for nodes which are physically in the same 32-processor hypercube as the

59

home node. The cabling of the standalone hypercubes is the same as in the hypercubes which
are linked together with a metarouter. The relatively high remote latency increase is a result of
the workaround for a hardware bug in the metarouters. To prevent a race condition in hardware,
the IRIX operating system disables the router bypass mechanism in all systems with a metarouter.
This workaround adds a two-cycle delay for each micropacket. Both the request and the reply mi-
cropackets are delayed; at 100 MHz router clock this results in a 40 ns latency increase. Additional
latency is due to longer cables in large Origin systems.

Detailed Remote Results

Latencies and bandwidths differ between nodes even when they are at the same distance from the
home node. The nodes are connected to routers via the system backplane. Two routers in the same
module are connected via the backplane as well. The routers in different modules are connected
via external cables. Figure 3.8 shows the physical configuration of a 32-processor hypercube. The
external cables vary in length from 65 to 180 inches. Considering the propagation delay (about
5 ns/m), the cabling adds 8–23 ns to the one-way latency. These differences are noticable in the
complete per-node remote results, shown in Table 4.13. Each row in this table gives latency and
bandwidth results for one node in a 64-processor system; the nodes are shown in increasing dis-
tance from the home node where the test data were placed. The back-to-back and restart latencies
are The latency result is the minimum from ten iterations of the experiment while the bandwidth
result is the maximum from ten iterations; they are followed by the standard deviation of the re-
sults. The latency and bandwidth values for each node are shown in Figure 4.7. These results were
collected on a 64-processor R12K/300/200/8 system; detailed results for a 128-processor system
with a metarouter are presented in Appendix A.

The test memory for all results was allocated on node 1. The closest neighbor (node 0) is one
router hop away; both nodes are connected to the router via the backplane. There are eight nodes
two hops away. Nodes 0–3 are in the same module, together with two routers that are connected via
the backplane; the path from node 1 to nodes 2 and 3 goes entirely through the backplane. The extra
router hop adds almost exactly 100 ns. The latencies for nodes 2 and 3 are about 10 ns less than
the latencies for nodes 4, 5, 8 and 9 which are in the other module. Routers in different modules
are connected via a cable which adds the extra latency. Nodes 16 and 17 are in the other 32P
metacube; the cables connecting routers in different metacubes are longer than cables connecting
routers in different modules, which explains additional 10 ns latency increase. Nodes three hops
away reveal similar results: the path from node 1 to nodes 6, 7, 10 and 11 goes once through the
backplane and once through the cable, whereas the path to nodes 12–13 goes through two cables,
which adds another 12 ns. Various combinations of backplane and cable lengths explain similar
latency variations in other nodes.

Modeling Remote Latency

Figure 4.8 shows the critical path for an unowned transaction. Local processor (L) requests a cache
line via the SysAD bus transaction. The Hub processor interface (PI) allocates a CRB entry and
sends out a READ request. If the node id of the requested cache line matches the local node id, the
crossbar (#) routes the request to the local memory/directory interface. Requests for remote lines
enter the interconnect network through the Hub network interface (NI), pass through one or more

60

arctic latency (ns) bandwidth (MB/s)
node hops b-to-b restart READ RDEX zero

1 0 385 298 558 512 266
0 1 721 629 446 376 258
2 2 820 733 432 350 240
3 2 818 732 432 349 253
4 2 832 747 425 344 252
5 2 831 745 425 344 252
8 2 831 747 424 344 252
9 2 831 746 424 342 252
16 2 843 754 425 345 222
17 2 841 754 425 342 239
6 3 937 851 393 317 234
7 3 936 852 392 320 234
10 3 938 850 392 317 234
11 3 936 849 392 319 234
12 3 949 864 390 316 246
13 3 949 863 390 317 246
18 3 945 858 398 316 234
19 3 944 857 395 318 234
20 3 957 870 389 315 240
21 3 956 870 390 315 233
24 3 955 869 390 314 233
25 3 955 868 389 313 243
14 4 1054 968 364 294 239
15 4 1054 967 364 294 228
22 4 1063 973 361 292 238
23 4 1063 973 361 291 227
26 4 1060 972 362 293 228
27 4 1059 971 362 293 227
28 4 1072 984 359 289 224
29 4 1073 983 359 290 227
30 5 1179 1091 336 271 220
31 5 1179 1091 335 271 218

Table 4.13: Remote results for a 64P R12K 300/200/8 system

61

0

200

400

600

800

1000

1200

0 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5

router hops

la
te

n
cy

 (
n

s)

0

100

200

300

400

500

600

700

b
an

d
w

id
th

 (
M

B
/s

)

lmbench-read

restart-read

bw-read

bw-rdex

bw-zero

Figure 4.7: Remote latency and bandwidth chart

L PI
SysAD

NI R R MD#NI

local latency remote penalty remote penaltynetwork delay local latency

Figure 4.8: Message flow in unowned transactions

routers (R), and then enter the network interface of the (remote) home node. The crossbar on the
home node forwards the request to the memory/directory interface (MD), which reads the cache
line from memory and performs the directory lookup. The reply goes back through the same path
back to the PI section of the local Hub, which deallocates the CRB entry after forwarding the data
to the processor via the SysAD bus response.

The latency can be broken down into three parts: local latency, remote penalty, and network de-
lay. The local latency is the time it takes to get the cache line from the local memory; it covers mes-
sage flow from the processor through the processor interface, the crossbar, the memory/directory
interface, and back. The remote penalty is the fixed cost of sending a message into the interconnect
and receiving it back into the node. This penalty is added to all remote requests regardless of the
distance to the home node. The network delay is the time spent in the network; it depends on the
number of router hops.

Table 4.14 shows the average router delay measured on several Origin systems. Except for
stinger, which is a system with a metarouter, the average delays for all systems are in the 105–
120 ns range. Router pin-to-pin latency with bypass enabled is 40 ns (four 100 MHz router core

62

clock cycles). Since we are measuring the round trip delay, we get 80 ns spent in the router and
35–50 ns due to the signal propagation delay. Combining the two together, we get an average
router delay of 111-114 ns. With a metarouter, the round trip pin-to-pin latency is 120 ns and the
signal propagation delay is 23–59 ns, for a total of 165 ns average router delay.

stinger arctic lego-oil bootleg
hop nodes delay nodes delay nodes delay nodes delay

1 1 149 1 106 1 107 1 111
2 6 151 8 110 6 107 6 118
3 12 179 12 115 6 115 6 113
4 20 171 8 116 2 114 2 110
5 18 160 2 117
6 6 151

avg 165 114 111 114

Table 4.14: Remote penalty and average router delays

The extra latency from the home node to its nearest router combines two quantities, the router
delay and the remote penalty. Two neighboring nodes are connected to the router via the backplane.
From the detailed analysis of remote latencies it follows that the backplane delay is ≈ 100 ns. The
remaining time is spent in node network interface and on the system backplane. We have chosen
an uniform remote penalty of 230 ns. The router delay for the first hop is the unowned remote
latency less the remote penalty.

The remote penalty of 230 ns is much higher than the value suggested by the previously pub-
lished results (130 ns) and the value used in standard Origin literature (165 ns). It is possible that
this discrepancy is due to the systems used in previous studies. Previous researchers measured
results on a system that had the 390 MHz backplane frequency synchronized with the 97.5 MHz
Hub. Newer systems have the Hub running at 100 MHz; additional latency may be due to this
crossing of clock domains.

4.3.3 Interventions

Intervention transactions are a group of transactions that are used to change the ownership or
downgrade an exclusive copy of the cache line. In all cases, intervention transactions involve three
participants. The requestor issues a read request and the home node finds the cache line owned by a
remote processor. In response, the home node issues sends intervention read-shared or intervention
read-exclusive request to the remote processor and a speculative reply to the requestor. The remote
processor downgrades the state of the cache line to either shared or invalid, and forwards the reply
to the requesting processor and a revision message to the home node. Depending on the state
of the cache line in remote processor’s cache, the remote sends a copy of the cache line to the
requestor if the line was modified (a dirty-exclusive transaction), or a simple acknowledgement (a
clean-exclusive transaction) if not.

63

R PI#NI

MD

R
READ

PIL

IRDSH

IRDSH

NI R

IRDSH

SACK

R PI#NI R
READ

PIL
SSPEC

NI R

IRDSH

SACK

MD

SSPEC

RL H

1:READ 2:IRDSH

2:SSPEC

3:SACK

(a) transaction

(c) local memory, remote owner (xhops=0)

R #NI
L

R

RDEX

PI

SSPEC

NI R

IRDSH

MD

(d) remote memory, remote owner (yhops=0)

(e) remote memory, local owner (zhops=0)

#

MD

L

R
PI

(b) local case

3:DNGRD

READ

IRDSH
SSPEC

SACK
SSPEC DNGRD

READ

SACK IRDSH
SSPEC

READ
DNGRD

SSPEC
SACK

CEXH
CEXM

Figure 4.9: Message flow in clean-exclusive transactions

Clean-Exclusive Miss Transactions

To evaluate the latency of clean-exclusive miss (CEXM) transactions, the remote thread touches all
data items in the test array (which is larger than the processor’s L2 cache) and then invalidates the
cache. This places the cache lines in exclusive directory state while the lines are dropped from the
remote’s cache. The local thread then chases a list of pointers in the test array: each read request
results in an intervention transaction. Figure 4.9 (a) shows the resulting message flow.

In general, the transaction participants can be placed anywhere in the system. The transaction
latency depends on the length of the critical path: the number of hops between the requestor
and the home node (xhops), the home node and the remote processor (yhops), and the remote
processor and the requestor (zhops). The simplest case is when all three participants are located
on the same node; Figure 4.9 (b) shows the resulting message path from the processor interface
(PI) through the crossbar into the memory/directory unit (MD). The speculative reply and the
intervention request both travel back to the local PI, which issues an intervention request on the
SysAD bus to the remote processor (R), and a data response to the requestor (L). When the remote
processor responds to the intervention request, the local PI sends the acknowledge through the
crossbar back to itself, which finally results in the data acknowledge transaction on the SysAD.

When the home node or the remote processor are on a remote node, the messages have to go

64

through the interconnect network. As we saw in the previous section, remote transactions incur
the remote penalty and the network delay. In order to compare the intervention latencies with
unowned latencies we have evaluated three placements which limit the number of variables by
placing two participants on the same node. In the first experiment, the requestor is placed on
the home node (xhops = 0); in the second experiment, the remote processor is placed on the
home node (yhops = 0); in the last experiment, the local and the remote processors are placed
on the same node while the home node is remote (zhops = 0). All three experiments varied the
distance between the two nodes between zero hops (local case) and the maximum distance in the
64P system. The message paths for each case are shown in Figure 4.9.

Table 4.15 shows latency data for remote clean-exclusive miss transactions measured on a
R12K 300/200/8 system. The intervention latencies are compared to remote latencies. The UOWN
column shows remote latencies for unowned transactions. Each of the three CEXM transaction
placements gives the latency and the difference compared to the unowned transaction the same
number of router hops away. The zero-hop row shows local results where all the participants are
on the same node. The ∆U columns show the average difference between the CEXM and UOWN
latencies.

UOWN xhops = 0 yhops = 0 zhops = 0
hops ns ns ∆U ns ∆U ns ∆U

0 385 683 298 683 298 683 298
1 721 987 266 942 221 1030 309
2 831 1105 274 1053 222 1174 343
3 946 1213 267 1165 218 1303 357
4 1062 1338 276 1283 221 1438 376
5 1179 1446 267 1397 219 1575 396

avg 270 220 n/a

Table 4.15: Remote latencies for clean-exclusive miss transactions

The smallest latency increase is shown when the remote processor is placed on the home node
(yhops = 0). The average 220 ns latency increase is the time needed for the PI to issue the
intervention on the remote node’s SysAD bus and for the remote processor to perform the L2
cache lookup. The speculative reply message reaches the local node first; the local PI immediately
acquires the SysAD bus and starts transferring the data into local processor’s cache (it takes 16 Hub
cycles to transfer the entire cache line over the SysAD). By the time the SACK message reaches the
local PI 22 Hub cycles later, the data is already in the cache and the PI completes the transaction by
issuing the completion response on the SysAD bus. When the home node is local, the speculative
reply message reaches the local PI well before the SACK message which completes the transaction.
The extra 50 ns measured in the xhops = 0 case could be because the PI has released the SysAD
bus after the speculative data were transferred in the requestor’s cache and the PI needs to reacquire
the bus mastership.

When the requesting processor and the remote owner are placed on the same node and the home
node is remote, the difference in CEXM and UOWN latencies shows no clear trend. The additional
latency is much higher compared to the other two cases. The bottleneck here is obviously the
contention for the SysAD bus: the local PI has to issue an intervention to the remote owner and the

65

speculative data response to the requestor. It is also not clear what is the reason for the increasing
difference between UOWN and CEXM latencies. A possible explanation is that the SSPEC message
is delayed in the interconnect; when it reaches the local PI section it occupies the SysAD bus,
which further delays the processing of the intervention response from the remote processor.

Clean-Exclusive Hit Transactions

This type of transaction is very similar to the clean-exclusive (miss) transactions discussed above.
All the protocol messages are the same; the only difference is that the remote processor keeps the
data in its L2 cache in a clean state. The intervention request issued on the SysAD bus hits in the
L2 cache, but the response is clean, which means that the requestor can use the data received in the
speculative reply.

Table 4.16 shows the latency data for clean-exclusive hit transactions. The values are compa-
rable to the clean-exclusive miss case. The noticable difference is the 12 ns latency decrease for
the cases where the current owner is on a remote node (xhops = 0 and yhops = 0 cases). This
difference is due to the organization of the L2 cache. The two-way set associative cache lookup is
performed first by checking the tags in the most-recently used set. If the lookup fails, another L2
bus transaction checks the tags in the other set. Since the test data used in the experiment amount
to only half the size of processor’s L2 cache and the majority of the cache lines are from the test
data, it is likely that the match occurs on the lookup of the first cache set. In the clean-exclusive
miss case, the lookup misses both in the first and in the second set, incurs an additional L2 bus
transaction. With the 200 MHz cache bus frequency, the penalty for the additional cache set lookup
is 6 cycles.

UOWN xhops = 0 yhops = 0 zhops = 0
hops ns ns ∆U ns ∆U ns ∆U

0 385 681 297 681 297 681 297
1 721 979 259 926 206 1027 307
2 831 1092 261 1046 215 1172 341
3 946 1203 256 1152 206 1301 355
4 1062 1325 263 1269 207 1437 375
5 1179 1434 255 1385 206 1572 393

avg 259 208 n/a

Table 4.16: Remote latencies for clean-exclusive hit transactions

Dirty-Exclusive Transactions

In dirty-exclusive transactions, the remote owner holds a modified copy of the cache line. The
requestor uses the data supplied by the remote processor and discards the data sent with the spec-
ulative reply from the home node. There are two types of dirty-exclusive transactions, depending
on the type of request issued by the requestor. When the requestor issues a READ request the
cache line is downgraded from exclusive to shared state; the remote processor supplies the data

66

RL H

1:READ 2:IRDSH

2:SSPEC

3:SRESP

3:SHWB
RL H

1:RDEX 2:IRDEX

2:ESPEC 3:XFER

3:ERESP

(b) dirty-exclusive transfer(a) dirty-exclusive downgrade

DEXTDEXD

Figure 4.10: Dirty-exclusive transactions

to the requestor and also updates the memory copy by sending the shared writeback (SHWB) re-
vision message (this is necessary because the home node supplies the data when the cache line is
in shared state). This dirty-exclusive downgrade (DEXD) transaction is shown in Figure 4.10 (a).
When the local processor requires an exclusive copy of the dirty cache line, the remote processor
still supplies the data with the ERESP message. However, the memory copy does not have to be
updated, because the cache line still remains in the exclusive state. The XFER revision message
simply notifies the home node that the transaction has completed. The dirty-exclusive ownership
transfer (DEXT) transaction is shown in Figure 4.10 (b).

Table 4.17 shows dirty-exclusive transfer latencies.4 All three cases show a significant increase
compared to the clean-exclusive results. Additionally, the data sent with the exclusive reply adds
more latency as the number of hops is increased. The only exception here seems to be the case
where the local processor is placed on the home node: the speculative reply sent by the home node
is received well before the dirty data from the remote node—the PI can simply transfer new data
over the SysAD to complete the transaction.

UOWN xhops = 0 yhops = 0 zhops = 0
hops ns ns ∆U ns ∆U ns ∆U

0 384 897 513 897 513 897 513
1 722 1149 428 1053 331 1236 514
2 830 1245 415 1177 348 1380 551
3 945 1359 414 1295 350 1513 568
4 1061 1480 419 1424 363 1650 590
5 1177 1598 421 1551 374 1786 609

avg 420 n/a n/a

Table 4.17: Remote latencies for dirty-exclusive transfer (DEXT) transactions

The most expensive intervention transactions are dirty-exclusive downgrades. The latencies
shown in Table 4.18 are even higher than the dirty-exclusive transfers—this is the impact of the
sharing writeback message. As in all intervention transactions, the most visible impact is in the

4Note that this table uses the lmbench-rdex latencies on unowned lines as the baseline for comparison to DEXT
transactions, as opposed to the lmbench-read values that are used as the baseline for the DEXD transactions. On
R12000 processors, the RDEX latencies are almost identical to the READ latencies. On R10000 processors, the RDEX
latencies are ≈ 40 ns higher.

67

UOWN xhops = 0 yhops = 0 zhops = 0
hops ns ns ∆U ns ∆U ns ∆U

0 385 978 593 978 593 978 593
1 721 1164 444 1044 324 1329 608
2 831 1366 535 1182 351 1469 638
3 946 1452 505 1308 361 1600 653
4 1062 1586 524 1445 383 1735 673
5 1179 1673 494 1583 404 1869 690

avg n/a n/a n/a

Table 4.18: Remote latencies for dirty-exclusive downgrade (DEXD) transactions

local case, when the multiplexed SysAD bus shows its limitations. There is a large variance in
timing, even when the local processor is placed on the home node: the data in the sharing writeback
impacts the timing of the shared reply.

4.3.4 Invalidations

The third important transaction is generated when a processor wants to get exclusive access to a
cache line that is shared among several processors. This transaction involves the local processor,
the home node, and one or more nodes which have a shared copy of the cache line. If the processor
does not have a shared copy, it will issue a read-exclusive request. The home node will determine
that the cache line is shared among a list of nodes, and it will send each sharer an invalidate request.
If the local processor has a copy of the cache line, it will request exclusive access by issuing the
upgrade request; the home node will respond by sending out invalidate messsages to the sharers and
a copy of the cache line to the local processor. In both cases the transaction cannot complete until
all the acknowledgements have been received from the sharer nodes, because the Origin protocol
implements sequential memory consistency model.

The performance of invalidate transactions depends not just on the distances between the re-
questor, the home, and the sharer nodes, but also on the number of nodes which have a shared copy
and thus need to be invalidated. We have analyzed the impact of distance between the requestor
and the home node in Section 4.3.2. To evaluate the impact of the number of sharers on the per-
formance of the invalidation transactions, we have executed a series of experiments with the local
processor and the test array on the same node. The cache lines in the test array were placed in
the shared state by having processors on remote (sharer) nodes read, and subsequently drop, the
cache lines in the entire test array. The local processor then executed latency and bandwidth ker-
nels where each store instruction triggered an invalidate transaction. The first set of experiments
was performed with one sharer placed on the same node as the local processor and the home node.
Each subsequent experiment added one node to the list of sharers, with the nearest nodes added
first.

Figure 4.11 shows the message flow in the invalidate experiments. The local processor issues a
read or upgrade bus transaction, which is translated into a RDEX or UPGRD request by the processor
interface section of the local Hub. The request travels through the crossbar to the memory/directory
interface on the local node. The MD performs a directory lookup, finds out that the line is in

68

L PI
SysAD

NI R

R PI#NI

MD

R

R

R PI#NI
R

R

Figure 4.11: Message flow in invalidate experiments

the shared state, and sends the invalidate message with the bit vector representing sharers to the
network interface; additionally, a response with the number of sharers is sent to the local PI. The
network interface expands the bit vector into individual invalidate messages and injects them into
the interconnect. Each sharer node responds to the invalidate message by issuing an invalidate
SysAD bus transaction to both processors and sends an acknowledgement to the local PI. When all
outstanding acknowledges have been collected, the local PI completes the transaction by issuing a
response to the local processor on the SysAD bus.

The data in Table 4.19 show the impact of the number of sharers on the latency and bandwidth
results. The local processor is placed on the home node. The experiment starts with one sharer
(the other processor on the home node). In each successive row in Table 4.19, a new node is added
to the list of sharers. The nodes are added in increasing distance (in network hops) from the home
node. To illustrate, the sharer list for one sharer is simply the home node (node 1). Two-sharer list
consists of the home node and its nearest neighbor (node 0). Three-sharer list consists of nodes 1,
0 and 2, and so on. All results were collected on a 64-processor 300 MHz R12000 system, which
consists of 32 nodes. The 64-node results are shown in Appendix A.

Invalidate Latencies

Figure 4.12 shows the impact of the number of sharers on the invalidate latencies. The number of
sharers is given on the x-axis. The y-axis shows the RDEX and UPGRD latencies from Table 4.19.
Only in the single-sharer case are the messages confined to a single node; in the other cases, all but
one interventio request and their corresponding acknowledgments traverse one or more router hop.
Two parameters impact the invalidate latencies: the number of sharers and the longest distance
from the home node to the nodes in the sharer list. To help isolate the impact of the number of
sharers, Figure 4.12 includes a plot of remote unowned latencies from the home node to the nodes
in the sharer list. Since the local processor is placed on the home node in invalidate experiments,
the difference between the invalidate and remote latencies estimates the impact of the number of
sharers.

The single sharer case has a higher latency than the unowned case: even though the transaction
is confined to a single node, the additional step and the SysAD transaction to the other processor
have a high impact. With two sharers, the read-exclusive latency is almost the same as the unowned
latency to a home node one hop away. The time to send the invalidate to the nearest neighbor is
longer than the time to invalidate the local processor, but not much more than fetching a cache line
from the nearest neighbor. The same argument applies in the three-sharer case. The latency to the

69

arctic latency (ns) bandwidth (MB/s)
#sh n h RDEX UPGRD RDEX UPGRD zero

1 1 0 608 341 328 385 215
2 0 1 734 433 289 315 206
3 2 2 825 486 264 279 196
4 3 2 858 505 249 268 187
5 4 2 881 520 242 258 179
6 5 2 907 533 232 252 172
7 8 2 927 542 223 246 165
8 9 2 942 558 214 238 158
9 16 2 956 583 205 230 153
10 17 2 977 612 196 221 147
11 6 3 1031 657 186 206 141
12 7 3 1067 687 177 198 137
13 10 3 1092 715 171 189 132
14 11 3 1111 742 164 181 128
15 12 3 1131 771 158 173 124
16 13 3 1146 797 152 165 120
17 18 3 1167 822 146 159 116
18 19 3 1183 850 141 153 113
19 20 3 1198 876 136 148 110
20 21 3 1214 904 132 142 107
21 24 3 1235 940 127 137 104
22 25 3 1254 975 123 132 102
23 14 4 1318 1021 119 126 99
24 15 4 1348 1054 115 121 97
25 22 4 1384 1093 112 117 94
26 23 4 1400 1125 109 114 92
27 26 4 1416 1157 106 110 90
28 27 4 1434 1197 103 107 88
29 28 4 1453 1234 101 104 86
30 29 4 1469 1264 98 101 84
31 30 5 1519 1316 95 98 82
32 31 5 1539 1353 93 95 81

Table 4.19: Invalidate results for a 64P R12K 300/200/8 system

70

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

sharers

la
te

n
cy

 (
n

s)

lmbench-rdex/UOWN

lmbench-rdex/SHRD

lmbench-upgrd/SHRD

Figure 4.12: Invalidate latency chart

third node two hops away determines the latency of this invalidate transaction. With four or more
sharers, the latency plot starts to rise above the unowned back-to-back latency. This could be due
to the order in which the invalidate messages are sent out: it looks as if the invalidates for the nodes
furthest away were sent last. This experiment placed the home on node 1; nodes with a numerically
high node number are physically more distant. The latency behavior could be explained if the Hub
generated invalidates in numerically ascending order. Therefore, the invalidates are sent to the
nearest nodes first and to the most distant last; the time to generate invalidates is added to the
remote latency.

The upgrade plot is somewhat surprising: the latency is much lower than the unowned back-
to-back latency, which is clearly not possible. This surprise demonstrates the limitation of the
lmbench-upgrd experiment: to generate the upgrade transaction, the line must be present in the
requestor’s cache (otherwise the store would be translated into a RDEX request). The modify kernel
in Figure 4.3 issues a store on the cache line followed by a pointer indirection step. The store
triggers the upgrade request while the load completes immediately (because the data is already
there). In the worst case, the load is satisfied in the secondary cache. The execution does not depend
on the store that triggers the upgrade transaction, and the upgrade transactions are overlapped.
The upgrade latency results do not measure the latency of the invalidate transaction in isolation;
the stores overlap until an internal processor resource (most likely the load/store issue queue) is
saturated.

71

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

sharers

b
an

d
w

id
th

 (
M

B
/s

)

bw-rdex/UOWN

bw-rdex/SHRD

bw-zero/UOWN

bw-zero/SHRD

bw-upgrd/SHRD

Figure 4.13: Invalidate bandwidth chart

Invalidate Bandwidths

Figure 4.13 shows how the number of sharers impacts the invalidate bandwidth results. Just like
the latency invalidate chart, we have included the remote RDEX and zero bandwidths for reference.
There are no surprising results here. The UPGRD bandwidth is slightly higher than the RDEX
bandwidth because upgrades do not carry any data. The zero results are less sensitive to the number
of sharers although the zero bandwidth is slowly descending.

Single Sharer Timings

The last set of invalidate experiments measures the time required to invalidate a cache line in a
remote processor cache. Figure 4.14 shows the transactions and the resulting message flows. The
cache line is first placed in the shared state by the local processor and a processor on the remote
node. The local processor then performs a linked list chase where it issues a dummy store before
the pointer dereference. Just like the intervention experiments, there are three nodes involved in
single sharer experiments. The results presented in this section are presented in a way similar to
the intervention results: the first set of measurements places the requestor on the home node and
varies the distance between the home and the sharer nodes (xhops = 0); the second set places
the home node and the sharer CPU together and varies the distance between the requestor and the
home (yhops = 0); the last set has the requestor and the sharer CPU on the same node and varies
the distance to the home node (zhops = 0).

Table 4.20 compares the latency of the RDEX single-sharer invalidations to the remote unowned

72

R PI#NI

MD

R

R

RDEX

PIL

ERESP

INVAL

NI R

INVAL

IVACK

R PI#NI
R

R

RDEX

PIL

ERESP

NI R

INVAL

IVACK

MD

RDEX

IVACK

RL H

1:RDEX 2:INVAL

2:ERESP

3:IVACK

(a) transaction

(c) local memory, remote sharer (xhops=0)

R #NI
L

R

RDEX

PI

ERESP

NI R

INVAL

MD

RDEX

(d) remote memory, remote sharer (yhops=0)

(e) remote memory, local sharer (zhops=0)

#

MD

L

R
PI

(b) local case

SHRD

Figure 4.14: Single sharer message flow

transactions. The UOWN column gives average latencies for the RDEX request while increasing the
distance to the home node. The three sets of measurement are shown in separate columns. The ns
column is the absolute time in nanoseconds; the ∆U is the difference from the UOWN time. The
results for the local case (where all three participants are on the same node) are very similar to the
case where the requestor and the sharer are local and the home is remote (zhops = 0): it takes
an additional 220 ns to invalidate the sharer cache. This suggests that the INVAL request arrives
before the SRESP reply: the local PI acquires the SysAD bus and places the invalidate request
first, followed by the data response targeting the requestor. The cache line transfer takes 16 SysAD
cycles at 100 MHz; an additional six cycles are required to collect the invalidate response from the
sharer CPU, send the IVACK reply from the PI output queue through the crossbar into PI input
queue, and send acknowledge to the requesting CPU, which completes the transaction. When the
sharer is placed on the remote home node, the ERESP message again arrives before the IVACK
reply; again, the difference between both messages depends on the time it takes the sharer CPU
to respond to the SysAD invalidation request. Finally, when the requestor is placed on the home
node while the sharer is remote, the difference in unowned and invalidation latencies decreases as
the distance to the sharer node increases. The data returned in the SRESP reply do not traverse
any network hops. They are transferred on the SysAD bus before the IVACK (which completes
the transaction) is received from the remote node. Since the SysAD is not occupied with the cache

73

line data transfer, the next RDEX request does not have to wait and can be issued on the SysAD
immediately.

UOWN xhops = 0 yhops = 0 zhops = 0
hops ns ns ∆U ns ∆U ns ∆U

0 384 609 226 609 226 609 226
1 722 729 7 993 271 940 218
2 830 793 -37 1080 251 1059 229
3 945 848 -97 1191 246 1172 227
4 1061 906 -154 1307 247 1283 222
5 1177 960 -217 1422 245 1395 218

avg n/a 247 220

Table 4.20: Remote latencies for single-sharer invalidations

74

Chapter 5

The ccNUMA Memory Profiler

The previous chapter has shown how the cost of a memory access can differ greatly in the ccNUMA
environment. Simple performance metrics such as the number of cache misses are not sufficient,
because they do not give enough information to estimate the cost of a memory access. This chapter
presents the design and implementation of the ccNUMA memory profiling tool. This tool is to be
used with other performance analysis tools to help determine application memory behavior and
system resource utilization. Section 5.1 introduces a set of performance metrics applicable to
ccNUMA systems. Section 5.2 gives an overview of the hardware event counters implemented in
various Origin 2000 ASICs. Section 5.3 describes the implementation details of four components
of the memory profiler: the loadable kernel module, which exports hardware event counters to
user programs; the system activity monitor, which offers an interactive view of the system resource
utilization; the application launcher, which runs an application and collects event traces while the
application is running; and the post-mortem analysis tool, which collates event traces from the
application run to compute application resource usage.

5.1 ccNUMA Performance Metrics

Distributed memory systems such as the Origin 2000 replace a single memory controller with a
set of memory controllers embedded within each node board. I/O devices can be attached to any
node in the system. A fast interconnect network replaces the shared bus. Scalability is achieved
by replacing a single resource (memory, shared bus) with a set of distributed resources. The key to
achieving application scalability is efficient load balancing: memory bandwidth-intensive applica-
tions should place the data across several nodes to benefit from the aggregate memory bandwidth
of several nodes; if the data are placed on a single node, the limited memory bandwidth on that
node can become the performance bottleneck.

A multithreaded application uses a subset of the system resources. The threads execute on
processors spread among several nodes. The data can be placed on pages allocated in different
memory controllers, and the nodes are connected together with a subset of the interconnect links.
Thread and memory placement can be left to the operating system. While the IRIX scheduler does
its best to place threads close to the memory they access, the application tuned for the ccNUMA
environment should use thread and data placement tools such as dplace [37] to pin threads
to processors and to specify explicit memory placement. In this way, the application uses the

75

resources on a subset of nodes in the Origin system.
The performance metrics can be divided into two groups: those that apply to each thread of

execution and those that apply to shared system resources. The application developer is primarily
interested in the behavior of each thread in the application: how it accesses the data items, what
transactions it generates, and how it interacts with other threads. At the same time, all threads in the
application use shared resources: the memory, interconnect, and I/O bandwidth. If the thread and
system metrics are sampled while the application is executing, it is possible to correlate the data
after the execution is finished to determine how the system resources were used. Such post-mortem
analysis can uncover potential scalability bottlenecks. The accuracy of this approach depends on
the “closed world” assumption: the application being profiled must not share the resources with
other processes executing in the system. Since it is not possible to distinguish memory requests
from different applications without extensive hardware support, the only ways to ensure accuracy
are either to use the system in dedicated mode, or to divide the system into batch and interactive
partitions and profile the applications submitted to the batch queue.

5.1.1 Thread Metrics

Thread metrics consist of a variety of events and derived quantities that can be associated with a
single thread of execution. During its lifetime, a thread can move from one processor to another;
while scheduling decisions could impact these indicators of performance, thread metrics do not
depend on a specific system resource. The MIPS R10000 event counters are a good example of
thread metrics. The operating system maintains a virtualized array of event counts for each thread
of execution. Whenever a thread is rescheduled on a different processor, the OS updates virtual
counters with event counts from the processor where the thread was executing, and clears event
counters on the processor where the thread is about to resume execution. The operating system
always returns virtualized event counts; in this way, scheduling decisions become irrelevant.

Several useful metrics help determine memory performance of an application on a ccNUMA
system. Even with the aggressive interconnect fabric in the Origin 2000 systems, the latency to
the nearest node is almost twice the local latency. The number of memory accesses that go to the
local node would ideally be kept as close to the total number of memory references as possible.
The local memory access ratio, defined as the number memory accesses satisfied locally over the
total number of memory accesses is a good indicator of data placement. Beyond the local/remote
ratio, one could further break down memory references based on the number of hops between the
requestor and the home node.

In Chapter 4 we saw how different coherence transactions incur significantly different costs.
Just as applications can be characterized by instruction mix (i.e., the number of integer, floating
point, memory and branch instructions executed), the ccNUMA applications can be characterized
by the coherence transaction mix. On the Origin, this mix is the number of unowned, invalidate,
clean-exclusive, and dirty-exclusive transactions generated by each thread. Additionally, the in-
validate transactions can be further classified by the number of sharers to be invalidated for each
invalidating store. The transaction mix, combined with the breakdown of requests by distance to
the home node, could be used as an estimate for the average memory access latency. Unfortunately,
there are other factors that significantly impact transaction latency and bandwidth characteristics.
A simple cycle counter embedded in the processor or the Hub processor interface section, triggered
by a cache miss or a SysAD request, could yield a much more accurate latency.

76

A metric that estimates the fraction of the total bus bandwidth used by each thread would be
useful for bandwidth-intensive applications. In the Origin system, the R10000 event counters can
be used to estimate the secondary cache and SysAD bus traffic. Given the total cache and SysAD
bus bandwidths, it is possible to compute the bus utilizations from the number of memory accesses
generated by each thread.

The metrics described above are specific to each thread. They focus on the memory perfor-
mance of the thread. Rather than attributing the metrics to the thread, it would be better if we
were able to associate the metrics with the data structures the thread accesses. Linking memory
references to data structures necessarily involves hardware and software support. In the absence of
features that enable mapping memory requests to data structures, we can use periodic interrupts to
record the thread program counter, and map it back into program source code. The data structures
accessed at the time the thread was interrupted can usually be deduced from their location in the
source code.

5.1.2 Node Metrics

Each node in the Origin system holds two processors, a portion of system memory, an I/O port
and a network interface that connects the node to the rest of the system. All four interfaces have
balanced bandwidth. The theoretical peak bandwidth of each port is 800 MB/s; as we saw in
Chapter 4, the sustained bandwidths are around 570 MB/s for the SysAD interface and more than
620 MB/s for the memory controller. It is hard to measure the network link bandwidth, but it seems
that the unidirectional bandwidth of a network link is higher than the total memory bandwidth. To
determine potential resource bottlenecks we need to measure the utilization of each interface.

The most important node metric is memory utilization. This metric gives an estimate of the
fraction of total memory bandwidth used on each node. Memory requests can be generated by
either local or remote processors. Measured local and remote bandwidths suggest that the total
memory bandwidth of a single node can be achieved just by two threads, one running on a local
processor and another on the nearest node. A multithreaded application can be slowed down if
several threads access data on a single node. Such imbalance can be spotted easily if we mea-
sure memory utilization on all the nodes where the application has allocated memory. If a single
node shows high memory utilization while the other nodes are idle, chances are that the hot spot
is limiting application performance. This scenario is not uncommon for “naive” multithreaded ap-
plications. The IRIX operating system will by default allocate pages on a first-touch policy; if the
application initializes its data with a single thread, it is quite possible that all the data pages will be
placed on a single node. When the application spawns worker threads, they will all access data on
a single node where the memory bandwidth can become a performance bottleneck.

Similar arguments apply to the network interface that connects the node to the nearest router:
network interface utilization can be used to determine whether a node network interface is the
bottleneck. In practice this seems very unlikely. Craylink ports have unidirectional bandwidth
higher than the memory interface. The link could get saturated only if there is a significant amount
of I/O activity in addition to the memory traffic.

The SysAD bus in the Origin systems has barely enough bandwidth to support a single proces-
sor. When two threads of a bandwidth-intensive application execute on a single node, the SysAD
bus does not have enough capacity for both. The bus utilization metric gives the estimate of the
fraction of the total SysAD bus bandwidth used by both processors on the node. If the bus utiliza-

77

tion is sufficiently high, it could be worth placing one thread per node instead of two threads per
node.

5.1.3 Network Metrics

The Origin interconnect routes are determined statically at system boot. While the bidirectional
links have a higher bandwidth than the memory interfaces, the shared links that connect routers
could become performance bottlenecks. The link utilization is an indicator of how much traffic
is being routed over the link; high utilization rates can lead to performance bottlenecks. Another
metric of interest is link contention. High contention rates contribute to network latency.

5.2 Origin Hardware Event Counters

The designers of the MIPS R10000 processor understood the importance of hardware support
for event counters that can be used to determine performance bottlenecks. The processor event
counters are widely used in SGI systems. For example, the SpeedShop performance analysis
tool uses processor event counters to help users optimize application performance by reducing
the number of cache and TLB misses and branch mispredicts. Unfortunately, the processor event
counters are not sufficient to evaluate the performance of the memory system. While it is possible
to collect the number of cache misses, the count alone does not give any information about the
transactions necessary to bring data items into the processor’s cache. This is not a problem in
an SMP system: each memory access costs the same. When the cost of a memory access is not
uniform, additional information is needed to estimate the cost of accessing memory.

In addition to the hardware event counters in the R10000 processor, the designers of the Ori-
gin 2000 have incorporated hardware event counters in the Hub and the Router ASICs. The events
defined by these counters can be used to evaluate application memory behavior and to determine
potential system bottlenecks. Unlike the processor counters, there is almost no OS support for the
Hub and Router event counters and there are no tools which use them. We have implemented a
device driver that exports the counters to the user programs. We have performed a sanity check
of the counters, verifying that they count events as described in the documentation. This section
describes various event counters in the Origin 2000.

5.2.1 MIPS R10000 Performance Counters

The R10000 performance counters can be used to estimate the number of requests generated by
each processor. The full description of the R10000 event counters is given in [48, pp. 264–272];
the IRIX API is described in [44] and the use of R10000 performance counters in application per-
formance analysis is described in [57]. The majority of events defined by the R10000 performance
counters are related to the working of various processor units. Table 5.1 describes the events that
are generated by memory accesses and cache coherence traffic.

The MIPS R10000 has two physical counters that can be programmed to count 32 events; the
Irix API that provides access to the performance counters is capable of multiplexing multiple events
on a single counter. The operating system reads both hardware event counters during the clock tick
interrupt processing (typically every 10 ms). The internally maintained counters for all events are

78

event description
7 Quadwords written back from secondary cache1

10 Secondary instruction cache misses
12 External interventions
13 External invalidations
26 Secondary data cache misses
28 External intervention hits in secondary cache2

29 External invalidation hits in secondary cache2

31 Store/prefetch exclusive to shared block in secondary cache2

1 Quadword is a 16 byte quantity.
2 The semantics of this event changes in R12000.

Table 5.1: R10000 performance counter events

64-bit wide. Even though the kernel API attempts to hide the hardware restrictions by allowing
event multiplexing, the processor requires that events 0–15 be counted by physical counter 0 and
events 16–31 be counted on physical counter 1. The kernel will resort to multiplexing when two
events that have to be counted on the same physical counter are selected simultaneously. These
restrictions limit the use of processor performance counters: only two events should be counted
simultaneously to obtain an accurate count when the measuring interval is short. Fortunately, it
is possible to capture almost all processor generated SysAD traffic by counting events 7 and 26
(cache writebacks and secondary data cache misses); in this case, the only unaccounted traffic is
due to instruction cache misses and the stores which result in an upgrade request.

5.2.2 Hub Event Counters

The Hub ASIC is divided into five sections: the processor interface, the memory/directory unit,
the I/O interface, the network interface, and the crossbar at the center that connects other units.
The memory/directory unit and the I/O interface both include registers, which function as event
counters. These registers are accessible by issuing uncached loads and stores to the I/O space; they
are isolated in a separate 16 KB page of physical address space, which makes it safe to map the
page in user space.

Memory/Directory Counters

The register set in the Hub MD unit includes six 20-bit registers which can be programmed to
count six types of events. Table 5.2 gives a summary of the Hub MD counting modes.

There is an undocumented system call that provides access to the Hub MD counters. It im-
plements 64-bit virtual event counters and is capable of multiplexing counting modes in a manner
similar to multiplexing events on the processor performance counters. The virtualized event coun-
ters are updated with the hardware values on every clock tick (10 ms); this is also the multiplexing
interval if the user selects more than one counting mode. The 10 ms sampling granularity is barely
sufficient to prevent counter overflow. When counting memory activity cycles, one of the coun-

79

mode description
0 memory activity breakdown
1 outgoing message classification
2 outgoing intervention/invalidation classification
3 incoming message classification
4 directory state for read classification
5 count of requests by local processors

Table 5.2: Hub Memory/Directory event counting modes

ters is incremented every Hub clock tick; with a 100 MHz clock, the 20-bit counter will overflow
in 10.5 ms. Additionally, the 10 ms sampling interval is longer than some important application
phases (e.g., the matrix transpose in the FFT kernel).

I/O Interface Counters

The Hub IO unit has two 20-bit counters that can count various events. The two counters were
meant to be independently controlled by a separate control register. The IO counters are not func-
tional in Hub revisions up to revision 2.1. Subsequent revisions implemented one 20-bit LFSR
counter, which is incremented when either the first or second selected event is seen. Table 5.3 lists
a subset of events that can be counted with Hub IO counters. Just like Hub MD counters, these
counters are grouped together in a separate 16 KB page.

select description
0xF0 Micropackets transmitted to the XBow
0x0F Micropackets received from the XBow
0xF1 Data-only micropackets received from XBow
0x1F Data-only micropackets transmitted to the XBow
0xF2 Micropackets transmitted to the crossbar
0x2F Micropackets received from the crossbar
0xF3 Data-only micropackets received from the crossbar
0x3F Data-only micropackets transmitted to the crossbar

Table 5.3: Hub IO event counter definitions

The micropackets are internal 64-bit messages sent or received from the Hub IO unit to the
crossbar (for a processor, memory, or the network interface) or on the Crosstalk interface that
connects the Hub to the I/O bridge. The number of micropackets in each direction need not be
the same: the IO unit provides two block transfer engines (BTEs) that copy cache lines between
memory locations; the cache lines copied by the BTEs are sent between the IO unit and the crossbar
only whereas the I/O data go on the Crosstalk interface.

80

5.2.3 Router Histogram Counters

The Router ASIC maintains a set of four counters for each link. The counters are 16 bits wide,
and they can all be accessed by a single 64-bit read operation. The counters can operate in three
modes. In the link utilization mode the counters are incremented whenever a micropacket is sent,
received, or granted a bypass. The DAMQ histogram mode gives an estimate of link contention
by counting the number of micropackets on a particular virtual channel waiting to be sent to the
outgoing link. In the last mode, the counters measure a histogram of packet ages. Table 5.4 gives
the description of each counter.

counter link utilization DAMQ histogram age histogram
0 bypass utilization 0 entries used 0–63
1 receive utilization 1–7 entries used 64–127
2 send utilization 8–14 entries used 128–191
3 50 MHz counter 15 entries used 192–255

Table 5.4: Router histogram counter registers

The 50 MHz counter runs at full link speed. The send and receive utilization counters are
incremented whenever a micropacket is sent to or received from the link. The bypass utilization
counter is incremented whenever a received micropacket bypasses the age arbitration (the DAMQ
queue is empty) and there is no contention for the outgoing port in the internal crossbar. The bypass
utilization represents the zero-contention case. When the input queue is not empty, the router will
allocate a DAMQ entry for each incoming packet. The DAMQ structure is used to implement
fair routing based on packet priorities. The number of active DAMQ entries is a good measure
of link contention. Note that the Origin interconnect implements four virtual channels. Packets
on the same virtual channel are delivered in-order; however, packets on different virtual channel
can be delivered out of order. The DAMQ histogram is computed for a selected virtual channel
only. Packets are routed based on their priorities—higher age means higher priority. Packet age
is incremented while waiting in the DAMQ queue. The age histogram can be used to evaluate
the efficiency of the aging algorithm. In practice, packet ages are not important on small system
configurations.

At 50 MHz, a 16-bit counter will overflow in 1.3 ms. Since the latency of accessing Router
registers is relatively high, the counters operate in a histogram mode: whenever one of the counters
overflows all four counters are divided by two. This operation loses the exact count, but maintains
the correct ratio between the counters. This makes it possible to reduce the sampling rate and still
get accurate utilization ratios.

5.3 Implementation

The ccNUMA memory profiler uses the information from the Origin hardware event counters
to compute various thread, memory and network metrics. Not all of the metrics discussed in
Section 5.1 can be computed from the Origin event counters. The follow-on system, Origin 3000,
implements new hardware event counters, which can be used to compute additional metrics.

81

The memory profiler is used in a manner similar to the SpeedShop tools[51, 46]. The appli-
cation is launched by the profiler, which samples hardware event counters periodically and saves
the output in trace files. When the application terminates, the data in trace files are analyzed with
a post-mortem analysis tool that uses event counts from the trace file to derive ccNUMA perfor-
mance metrics. There is no graphical user interface—tools such as gnuplot [54] or jgraph [31]
can be used to visualize the ccNUMA metrics. It is also possible to interactively print node and
network metrics by using the system activity monitor.

The existing IRIX interfaces to the hardware event counters are inadequate for accurate appli-
cation profiling, mostly due to relatively slow update intervals (10 ms for the Hub counters and
two seconds for the router utilization counters). Our first task was to design and implement a new,
more flexible interface to the Hub and Router counters; the resulting loadable kernel module is
described in Section 5.3.1. The system activity monitor is described next in Section 5.3.2, together
with a discussion of implemented node and network metrics. Section 5.3.3 describes the imple-
mentation of the application launcher and a discussion of the implemented thread metrics. Finally,
Section 5.3.4 describes the post-mortem analysis tools.

5.3.1 Loadable Kernel Module

The loadable kernel module (LKM) provides a fast and safe way for user programs to access the
Hub and Router hardware event counters. The LKM is a simple device driver that establishes a
connection between the user program and the hardware registers. It can map the Hub counters into
user space, access the Router histogram registers, and perform a number of driver-specific device
control calls. Higher-level operations, such as regular sampling, multiplexing, and virtualizing
event counters, are implemented in user space.

The decision to implement the minimum amount of support in the kernel driver was based on
a couple of observations. First, it is not possible to implement high-frequency sampling rates in
the kernel without imposing an unwanted overhead on the rest of the system. The device driver
should provide a means of accessing the hardware registers for processes which need it, but should
otherwise stay out of the way. In this way, the sampling overhead is paid by the user-level process.
Additionally, the sampling process can be pinned for execution on one processor. This has the
benefit of minimizing the context-switch overhead (Irix will schedule the timer interrupt on the
processor to which the sampling process is bound) and using the resources that are not used by
application threads. Second, a sampling interface implemented in the kernel would be obsolete
with a new generation of the Origin systems. An obsolete interface would have to stay in the
kernel forever because of backwards compatibility, though.

The loadable kernel module creates a device file for each source of hardware event counters
in the system. The device files are created in the /hw filesystem [38]. There are three kinds of
devices: map devices are created for registers that can be mapped into user space by means of a
mmap system call; link devices map event counters which reside on the Router ASIC, and a special
operation (the vector read/write operations) is required to access them. Rreg devices are similar to
link devices; they are created as part of the extended LKM interface and provide an interface to the
complete router register space. Table 5.5 summarizes the device files created when the loadable
kernel module is loaded into the kernel.

All devices implement open, close, and ioctl system calls; additionally, the map devices
implement mmap and munmap system calls. The ioctl interface is used to obtain device infor-

82

path device description
/hw/.../node/hub/md map Hub memory/directory counters
/hw/.../node/hub/io map Hub IO counters
/hw/.../node/hub/ni link alias for the node outgoing link
/hw/.../router/stat/[1-6] link link histogram counters

Table 5.5: Device files created by the LKM

mation, access link counters, and set device parameters. Table 5.6 shows the ioctl commands
implemented by the kernel module and the devices to which they apply.

command device description
SNPC_QUERY Get device information
SNPC_HIST_POLL link Read link histogram counters
SNPC_HIST_READ link Read and clear link histogram counters
SNPC_HISTSEL_GET link Get link histogram counting mode
SNPC_HISTSEL_SET link Change link histogram counting mode
SNPC_VECOP rreg Issue a vector read/write operation
SNPC_VECTBL link, rreg Get vector route to the router

Table 5.6: The ioctl commands defined by the LKM

All devices support the SNPC_QUERY command, which returns device information in the
snpc_query_t structure. The snpc_id field is used to distinguish various devices exported
by the loadable kernel module. The LKM assigns an unique identification to each device type;
this is necessary to properly implement sampling in user space and to distinguish similar sources
of performance data between generations of Origin systems. The snpc_base and snpc_size
fields give the physical address and the size of the mappable address space; they only apply to
map devices. The snpc_master field points to the master device, either a Hub or a Router. The
snpc_port field gives the Router port number (1–6) that this device refers to. The snpc_route
field gives a vector route from the node where the process issuing the ioctl call was running to
the Router to which the device refers to. Both snpc_port and snpc_route are only valid for
link devices.

The SNPC_HIST_POLL and SNPC_HIST_READ commands return the values of all four
Router histogram counters in the link_hist_t structure. Both commands return the current
snapshots of the hardware counters; the SNPC_HIST_READ command also clears the counters.
The vector operations have a relatively long latency, compared to the uncached load and store oper-
ations that are used to access the Hub registers: the typical latency for router reads is around 5 µs,
whereas the local Hub registers can be accessed in 300 ns. The overhead is due to the length
of the call path and the latency of vector routing, which is slower than normal table-driven rout-
ing. Besides link utilization, the Router histogram counters support two additional modes of op-
eration: packet age breakdown and DAMQ utilization. Commands SNPC_HISTSEL_GET and
SNPC_HISTSEL_SET may be used to query/set Router histogram counting mode. By default,
when the link device is opened the LKM selects link utilization mode.

83

The IRIX OS does not maintain a table of vector routes from each node to all the routers in
the system. Since a user process that accesses router histogram counters can run on any processor
in the system, the loadable kernel module needs to compute the full matrix of vector routes in the
system. The matrix is constructed when the LKM is installed in the kernel. The algorithm first
constructs a list of all objects (nodes and routers) in the system and then uses a breadth-first search
algorithm to construct the shortest path from each router to all the nodes. Rows of this matrix
represent routers and columns represent node numbers. The SNPC_VECTBL command returns a
row of this matrix for a router where the device is located. The returned array holds vector routes
indexed by the node number. This command is intended for debugging purposes only.

Accessing Hub Event Counters

The event counters in Hub memory/directory and I/O interfaces are accessed by mapping the phys-
ical address of the event registers into user space. Figure 5.1 shows a code fragment that opens and
initializes the Hub MD counters.

Function hubmd_open opens the Hub MD device for node cnid , maps the registers into user
space, and returns a pointer to the hubmd_regs_t structure, which defines the layout of the
Hub MD counters. First, a path to the Hub MD device is constructed at line 10. If the open
is successful, the SNPC_QUERY call returns the information about the device; the assertions at
lines 17–18 make sure that the device corresponds to Hub MD event counters, and that the device
supports the mmap call. Lines 19–23 map a section of the physical memory that contains the
counters into process address space; the size of the mapped area is provided by the snpc_size
field. Upon a successful completion of the mmap call, the addr variable points to the start of the
mapped area. The cast at line 24 computes the virtual address of the hubmd_regs_t structure,
which describes the physical layout of the event counting registers. The Hub MD event counter
interface consists of one control register and six counter registers. The pointer dereferences at lines
25–27 are translated into uncached references to the physical registers. Their effect is to stop event
counting and clear the counter registers.

Accessing Router Histogram Counters

The interface to the Router histogram counters is similar to that of the Hub registers. The only
difference is that the histogram counters require an ioctl call to read the values, instead of
pointer dereferences. Figure 5.2 shows a code fragment that opens and initializes the link device.

The construction of the device path at line 8 and the initialization at lines 9–14 is similar to the
code in Figure 5.1. The assertions at lines 15–16 check for a link device, instead of a Hub MD
device. The ioctl call at line 17 reads and clears the histogram counters; the appropriate vector
read and write operations are issued by the driver code in the kernel, which stands in sharp contrast
to the pointer dereferencing used to access Hub event counters.

Extended LKM Interface

The devices created by the regular LKM interface allow access to the event counters in the Hub
and Router ASICS. The interface is safe to use by non-privileged programs. The physical memory

84

1 #include <snpc.h>

2 hubmd_regs_t* hubmd_open(int cnid)
3 {
4 int fd;
5 void* addr;
6 size_t size;
7 snpc_query_t info;
8 hubmd_regs_t* regs;
9 char path[PATH_MAX];

10 sprintf(path, "/hw/nodenum/%d/%s/%s", cnid,
11 SNPC_EDGE_HUB, SNPC_EDGE_MD);

12 if ((fd = open(path, O_RDWR)) < 0)
13 return 0;

14 if (ioctl(fd, SNPC_QUERY, &info) < 0) {
15 close(fd);
16 return 0;
17 }

18 ASSERT(info.snpc_id == SNPC_SN0_HUBMD);
19 ASSERT(info.snpc_flags & SNPC_MAP);

20 size = info.snpc_size;
21 addr = mmap(0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
22 close(fd);
23 if (addr == MAP_FAILED)
24 return 0;

25 regs = (hubmd_regs_t*)
26 ((char*) addr + (info.snpc_base & (size-1)));

27 regs->sel = 0;
28 for (i=0; i < HUBMD_COUNTERS; i++)
29 regs->count[i] = 0;

30 return regs;
31 }

Figure 5.1: Sample code fragment opening and initializing a Hub MD device

85

1 #include <snpc.h>

2 int hubni_open(int cnid)
3 {
4 int fd;
5 link_hist_t hist;
6 snpc_query_t info;
7 char path[PATH_MAX];

8 sprintf(path, "/hw/nodenum/%d/%s/%s", cnid,
9 SNPC_EDGE_HUB, SNPC_EDGE_NI);

10 if ((fd = open(path, O_RDWR)) < 0)
11 return -1;

12 if (ioctl(fd, SNPC_QUERY, &info) < 0) {
13 close(fd);
14 return -1;
15 }

16 ASSERT(info.snpc_id == SNPC_SN0_LINK);
17 ASSERT(info.snpc_flags & SNPC_LINK);

18 if (ioctl(fd, SNPC_HIST_READ, (void*) &hist) < 0) {
19 close(fd);
20 return -1;
21 }

22 return fd;
23 }

Figure 5.2: Sample code fragment opening and initializing a link device

86

mappings are restricted to Hub event counters, and regular ioctl calls can access Router his-
togram counters only. However, the same mechanism that is used to access a subset of Hub and
Router counters can be extended to the whole physical I/O address space. The loadable kernel
module has a compile-time option that allows LKM to create additional devices in the /hw filesys-
tem, which provide access to the full Hub and Router I/O register space. Table 5.7 shows devices
that are part of the extended LKM interface. The rreg devices are used to access full Router reg-
ister space by means of the SNPC_VECOP command. The hubreg and ialias devices provide
a mapping of the Hub local register space (see [49, pp. 28–31] for details).

path device
/hw/.../router/rreg Router register space
/hw/.../node/hub/hubreg Hub register space
/hw/.../node/hub/ialias Hub register space on the local node

Table 5.7: Device files in the extended LKM interface

The extended interface was added to the LKM to allow access to the system routing tables.
The Irix OS does not provide an interface that returns static routes used for regular packet routing
in the Craylink interconnect; a user-level program snroute uses the extended LKM interface to
read Hub and Router routing tables and prints the routes between nodes. However, the extended
LKM interface does not provide an adequate access control mechanism which would make it safe
for general use. The interface allows any program that can open the rreg device read access to
the entire Hub I/O register space. Since even reads to I/O space can have side effects, the extended
LKM interface is inherently unsafe and should be used by experienced users only.

5.3.2 System Activity Monitor

The snsar program uses the loadable kernel module interfaces to the Origin hardware event
counters to continuously print the values of various node and network metrics. All sampling is
done in user space: the hardware event counters are virtualized into 64-bit values, and the sampling
interval is chosen to be fast enough to prevent any hardware counter overflow. Table 5.8 shows the
options recognized by snsar. The the options are divided into three groups: the list of objects
to be monitored, the list of metrics to be measured, and a set of general options which control
the sampling process. The options are followed by two arguments: the first one specifies the time
between value updates on standard output; the optional second argument specifies the number of
update steps.

The snsar program can monitor two kinds of objects: nodes and router ports. Nodes are
specified either as compact node ids or as paths in the /hw filesystem. Router ports are specified
by the /hw path to the router followed by the port number. Any number of nodes and ports can be
monitored at the same time. The cost of uncached references used to access the hardware registers
is relatively low (local Hub registers can be accessed in ≈ 300 ns). Sampling is controlled by
two options: the clock option specifies the timer source, which is used to implement periodic
sampling process wakeup; the sample option specifies the sampling interval. The IRIX operating
system implements a regular realtime clock that can be used by any process; the realtime clock
resolution is 10 ms. Privileged processes can use the fast realtime clock, whose resolution is limited

87

option description
--node n Print metrics for node n
--port path:n Print metrics for port n on router path
--clock clk System clock to be used for sampling
--sample ms Sampling interval in milliseconds
--runon n Bind snsar process to CPU n
--rtprio[=p] Schedule snsar process with realtime priority p
--output file Save metric data on file

Table 5.8: Options recognized by the system activity monitor

1 rapture$ snsar -n1 --mem --mdidle --mdbusy 1 5

2 IRIX64 rapture 6.5 10120733 IP27 Thu Jan 4 20:53:58 2001

3 n1 = /hw/module/11/slot/n2/node

4 mem = memory utilization
5 mdidle = memory idle cycles
6 mdbusy = memory busy cycles

7 time loc mem mdidle mdbusy
8 0.003 n1 1.890 98108158 1889585
9 1.003 n1 1.973 98021138 1972694

10 2.003 n1 1.985 98008426 1985296
11 3.003 n1 2.012 97982060 2011668
12 4.004 n1 1.978 98015526 1978196

13 [0.003,5.004]: 500 ticks, 10.00 ms/tick, 9.60 us/sample

Figure 5.3: Sample invocation of snsar

only by the operating system processing overhead; when the sampling process is bound to a specific
processor, the observed clock resolution with sampling overhead was as low as 100 microseconds.

The sampling process can be bound to a specific processor: option runon binds the snsar
process to the specified processor. In this way, the sampling activity can be moved away from
the portion of the system where the application is running, which avoids scheduler interference.
Binding a process to a specific processor also reduces the OS overhead involved with processing
a clock interrupt and waking up the snsar process, which increases sampling accuracy. Another
option to increase sampling accuracy is to put the snsar process in the realtime scheduling class,
which puts the process priority above all time-shared processes. The realtime priority is available
only to privileged users.

It is possible to save the snsar output to a file; the resulting binary file can be viewed with
the sndump and sninfo commands, described in Section 5.3.4.

Figure 5.3 shows a sample invocation of the snsar command. The output shows five one-
second snapshots of the memory utilization on node 1, along with the number of idle and busy

88

cycles. The preamble starts at line 2, which shows the system information (similar to the uname
output) and the current time. The list of monitored objects starts at line 3: selected node 1 is shown
with the full path in the /hw filesystem. Lines 4–6 complete the preamble output; they show a list
of metrics to be printed on standard output, together with a brief description of each metric. The
remaining lines show one-second updates of the three metrics measured on node 1. The results
were obtained on a mostly idle system. The memory utilization is less than 2% (busy cycles are
mostly due to memory refresh which is typically around 1.8%). The sum of idle and busy cycles
shows that the Hub on node 1 runs at 100 MHz. The last line printed by snsar gives the sampling
summary.

Implemented Node Metrics

Memory utilization is derived from the first set of Hub MD counters. In this mode, the event coun-
ters count Hub cycles in which the memory controller was idle, blocked due to no output queue
space, busy refreshing DRAM memory, busy serving requests which involve directory lookup only
(such as revision messages), busy serving requests which involve memory and directory access,
and busy due to miscellaneous conditions. The memory utilization is defined as the fraction of
time when the memory controller was not idle. The busy time is not proportional to the number of
incoming requests: the directory controller is pipelined—multiple memory requests can be served
simultaneously.

Incoming memory requests can be broken down into read requests, write replies, revision mes-
sages that update directory state but do not return any data, and other miscellaneous requests.
Additionally, it is possible to collect the statistics about fetch-and-op requests, such as the total
number of fetch-and-op requests and the hit rate in the small fetch-and-op cache in the Hub.

The breakdown of the outgoing message traffic can be used to determine the distribution of
ccNUMA transaction types. It is possible to determine the fraction of requests that result in a
backoff reply or a negative acknowledgement. It is also possible to compare the number of data
responses to the number of intervention and invalidate messages. A separate Hub MD mode can
be used to break down intervention and invalidate traffic. However, it is not possible to distinguish
between clean-exclusive and dirty-exclusive transactions. The home node sends out an intervention
and a speculative reply. It is up to the remote processor to determine whether it has dirty data in its
cache. Additionally, it is not possible to distinguish outgoing traffic based on whether the original
request was local or remote. In the absence of the counters in the Hub PI section, it is not possible
to compute per-thread transaction breakdown, only the application totals.

The read transaction breakdown can also be approximated by looking at the directory state of
the cache line. Requests for unowned lines and requests for exclusive lines issued by the current
owner always result in simple two-step transactions. Requests for exclusive lines owned by a
processor other than the current owner result in three-step intervention transactions. Read requests
for shared lines result in a simple two step transactions, while read-exclusive requests for shared
lines result in invalidate transactions. Unfortunately, it is not possible to get an estimate of the
number of invalidate messages generated by invalidate transactions.

The last Hub MD counting mode gives a breakdown of requests generated by local processors
and I/O. It is possible to separately count the number of read and writeback requests generated
by local processors and the number of read and write invalidates generated by the local I/O. It
is not possible to get the number of requests generated by remote nodes or to determine which

89

transactions resulted from incoming local requests.
All the metrics described so far can be derived from the Hub MD counters. The counter facility

in the Hub I/O interface can be used to measure the amount of data traffic between the crossbar and
the I/O interface, and between the I/O interface and the Xtalk port. Due to Hub IO performance
counter implementation limits, traffic can be measured in only a single direction.

It is not possible to measure the SysAD utilization: the only accurate way of establishing the
SysAD traffic would be to have a counter facility in the processor interface section. The SysAD
traffic can be approximated by having each thread count the number of cache misses that are
translated into SysAD requests. However, snsar has no knowledge of threads. The SysAD
traffic can be estimated with the application profiler, as described in Section 5.3.3.

While there are no performance counters in the Hub network interface, the node link utilization
can be deduced from the Router counters for the router port that connects the node to its nearest
router. The loadable kernel module creates the /hw/.../node/hub/ni alias to provide an
easy way for the sampling process to measure a node’s incoming and outgoing link utilization.
The snsar program measures the node input and output link utilizations, which are simply the
send and receive utilizations for the router port that corresponds to the ni alias.

Implemented Network Metrics

The snsar program can independently monitor all ports on every router in the Origin system.
The ports are specified as the /hw path to the router followed by the port number. Unfortunately,
it is not possible for the snsar to automatically determine the portion of the interconnect network
that connects a set of nodes—the topology has to be inferred from the topology command [47].
For each port, the following metrics can be collected:

• The link send utilization gives the percentage of the total link bandwidth used by the outgoing
traffic.

• The link receive utilization gives the percentage of the total link bandwidth used by the
incoming traffic.

• The bypass utilization gives the percentage of received messages that were able to use the
fast path through the router. Messages receiving the bypass grant have the pin-to-pin router
latency of 40 ns; when the bypass is not granted the latency increases to 60 ns. The bypass
utilization is a good initial estimate of the link contention.

• The DAMQ histogram for a given virtual channel can be used to get a more detailed profile
of the link contention.

• The message age histogram can be used to collect data about packet aging.

All network metrics are also available as raw event counters. To obtain accurate counts, the
router histogram counters have to be sampled at ≈ 1 ms intervals. The snsar program will
attempt to use the high-precision clock in order to obtain accurate values. However, the high-
precision clock is available to privileged users only. Regular users can still sample router histogram
counters: the ratios are accurate, even if the raw counts are not.

90

5.3.3 Application Launcher

The application launcher, snrun, is used to gather event counter traces for the duration of appli-
cation execution. The snrun program combines the functionality of snsar with a shared library
called the thread wrapper, which traces program execution and collects data about application
scheduling and periodic samples of the R10000 event counters. The results of application profiling
are two or more event trace files: one trace file contains the data from the Hub and Router counters,
and the other trace files contain event traces for each application thread. The data in these files are
viewed and analyzed with post-mortem analysis tools described in Section 5.3.4.

The snrun program takes all the options accepted by snsar: users needs to specify all the
nodes and ports where they expect that the application will execute, along with the metrics in
which they are interested. It is also necessary to specify the sampling interval length: this is the
time between two consecutive snapshots of the hardware event counters stored in the trace file.
The snrun program additionally accepts options which trigger the collection of thread metrics.
The remaining arguments to snrun are interpreted as the command to be executed.

Figure 5.4 shows a sample application profiling session. Option -r1 binds the snrun process
to the processor 1 (on node 0). The sampling interval is 50 ms (-s50); the trace file will contain
event counters from nodes 1 and 2 (-n1 -n2); and the snrun program will collect all event
counters needed to compute the local memory access ratio (-alocal). The rest of the command
line specifies the command to be run by snrun: the snbench command places home memory
on node 1 and creates two threads, one on processor 3 (on node 1) and another on processor 5 (on
node 2). Lines 2–4 show the output of snbench. The other output was generated by the thread
wrapper: for each thread, the wrapper prints the file name where the traces have been stored, along
with a short summary of the trace file.

The Thread Wrapper

The thread wrapper is a dynamic shared object (DSO). The snrun program adds the thread wrap-
per to the list of DSOs that form the address space of the application process. As part of process
initialization, the run-time dynamic linker will unconditionally call the thread-wrapper initializa-
tion function. This mechanism allows for arbitrary code to be executed in the host process, without
any host process modifications. The thread wrapper uses interval timers to set up periodic signal
delivery. Whenever a signal is delivered, the thread wrapper stores new information about the
location where the thread is executing, the program counter that points to the section of code in-
terrupted by the signal, and all R10000 event counters that are needed to compute thread metrics

1 rapture$ snrun -r1 -s50 -n1 -n2 --alocal snbench -h1 -l3 -l5 bw-read
2 EXPERIMENT STAT TID MIN MAX MED AVG STDEV UNIT
3 bw-read UOWN 3 304.243 306.304 305.26 305.268 0.6203 MB/s
4 bw-read UOWN 5 263.582 264.967 264.537 264.477 0.4599 MB/s
5 snbench.out.snp.p445554[0.212,1.971]: 35 ticks, 50.01 ms/tick, 60.00 us/sample
6 snbench.out.snp.p443132[0.192,1.971]: 35 ticks, 50.01 ms/tick, 43.20 us/sample
7 snbench.out.snp.e445028[0.057,2.019]: 39 ticks, 50.00 ms/tick, 34.40 us/sample

8 snbench.out[0.014,2.045]: 199 ticks, 10.20 ms/tick, 13.60 us/sample

Figure 5.4: Sample invocation of snrun

91

specified on the snrun command line. The CPU where the thread is running is needed in the post-
mortem analysis in order to correlate the data from R10000 event counters with the Hub counters
on the same node. The interrupted program counter can be mapped back into application source
code to determine which section of code was executing when the interrupt took place. The R10000
event counter data are correlated with Hub counters to compute thread metrics, such as the ratio of
local to remote memory accesses.

In addition to periodic sampling of the R10000 event counters, the thread wrapper traces the
creation of new threads and processes. Whenever the application creates a new thread with the
sproc system call or creates a new process with the fork call, the thread wrapper intercepts
the call and creates a new trace file for the data collected in the new thread/process. In addition,
if the application performs the exec call, the new process will include the wrapper DSO in the
list of shared libraries, the run-time dynamic linker will map and initialize the thread wrapper,
and the sampling process will restart. The ability to intercept thread creation, process creation,
and the chaining of executables enables the application launcher to profile applications which use
either fine-grained parallelism in a shared address space (the sproc model, OpenMP programs)
or coarse-grained parallelism in separate address spaces (MPI programs that use the fork model).
The interception of exec calls makes it possible to use manual data placing tools such as dplace.
The only model that is not supported by the thread wrapper is the POSIX thread model. In Irix,
POSIX threads do not have kernel scope; the thread scheduling is done entirely in user space.

Implemented Thread Metrics

When sampling the R10000 event counters, the thread wrapper always includes the processsor
number where the thread is executing along with the program counter of the interrupted application
in each sample. The processor number enables the post-mortem analysis tools to associate thread
events with Hub and Router counters. The program counter makes it possible to correlate the
changes in performance metrics with source code locations.

One of the thread metrics that can be computed in the post-mortem analysis is the local memory
access ratio. This metric gives the percentage of memory references generated by the thread that
were satisfied by the local node. The metric is computed by having the thread wrapper sample the
number of secondary cache misses, whereas the snrun process samples the Hub MD counters to
get a breakdown of local requests. The local memory access ratio is computed as the number of
read requests reported by the Hub counters divided by the total number of secondary cache misses.
It is also possible to compute memory access ratios for all memory requests (combined reads and
writebacks); in this case, the thread wrapper also samples the number of quadwords written back
from the secondary cache, which is correlated to the number of writeback requests generated by
the local processor. The local memory access ratio is very sensitive to the interference of other
processes, especially on node 0, because the operating system places many of its data structures
there and it uses processor 0 for systemwide periodic tasks.

The post-mortem analysis can also derive the fraction of the total SysAD bus bandwidth used
by a thread. The thread SysAD utilization is computed from the number of read and writeback
requests generated by the thread. Each request transfers a 128-byte cache line over the SysAD bus,
and the full bus bandwidth is assumed to be 570 MB/s. While the results reported in Table 4.10
vary slightly for different generations of Origin node boards, using 570 MB/s for the maximum
SysAD bandwidth ensures that the utilization does not exceed 100%. This metric does not account

92

for transactions that transfer two cache lines over the SysAD bus (e.g., dirty-exclusive transactions
that discard speculative replies). It is not possible to account for the dirty data pulled out of the
secondary cache by intervention and invalidate requests.

Origin hardware event counters do not provide enough information to compute the ccNUMA
transaction mix. The Hub MD counters cannot associate directory transactions with the source
of the request (local/remote processor) and there are no event counters in the processor interface
section of the Hub. For this reason alone it is not possible to compute the average memory access
latency. An additional problem in computing average transaction latencies is the unpredictable
nature of intervention transactions that depend not just on the distances between transaction par-
ticipants but also on the SysAD bus timing.

5.3.4 Post-Mortem Analysis

The application profiler outputs one or more event trace files. Each trace file contains information
about the system where the trace was generated, the objects (threads, nodes, and network ports)
whose hardware event counters were being collected, and a collection of samples from each object.
Each sample holds a high-precision time stamp, which is used to collate the samples from various
trace files. There are two programs which can be used for the post-mortem analysis: the sninfo
program prints information about trace files, and the sndump program prints full contents of the
trace files.

Figure 5.5 shows sample output from sninfo. The files specified on the command line come
from the snrun experiment shown in Figure 5.4. Three files are generated by three threads, and
the fourth file which the contents of the Hub counters. The output is similar to the preamble printed
by snsar. It begins with a short description of the system where the traces were collected and the
list of monitored objects. The trace files hold samples from two nodes and three threads. The next
section of output shows all the metrics that can be computed with the data in the trace files. The
list in Figure 5.5 is much longer than the metric which was specified in the snrun command line
because the post-mortem analysis is able to compute several different metrics from the trace data.
In the example above, the -alocal option triggered the collection of secondary cache misses
and the number of quadwords written back from the secondary cache for each thread. In order
to compute the ratio of local and remote accesses, the snsar program also counted the number
of requests generated by the local processors. From this raw event data, the sndump process
can derive both the local memory access ratio and the SysAD bus utilization for each thread.
Additionally, it is possible to print sampled values of the event counters.

In addition to the preamble, the sndump program prints the values of the selected metrics. The
output can be restricted by specifying the objects whose metrics are to be printed, or by specifying
the desired metrics—by default, sndump will print the data from all objects and all metrics that
can be derived from the data in the trace files specified on the command line. The output is sorted
by increasing timestamp order.

93

1 rapture$ sninfo snbench.out*

2 IRIX64 rapture 6.5 10120733 IP27 Thu Jan 4 21:14:38 2001

3 n1 = /hw/module/11/slot/n2/node
4 n2 = /hw/module/11/slot/n3/node
5 t0 = snbench:445028
6 t1 = snbench:443132
7 t2 = snbench:445554

8 lp0 = total requests by local processor 0
9 lp1 = total requests by local processor 1

10 lio = total requests by local I/O
11 lp0read = read requests by local processor 0
12 lp0wback = writeback requests by local processor 0
13 lp1read = read requests by local processor 1
14 lp1wback = writeback requests by local processor 1
15 lioread = read requests by local I/O
16 liowinv = write invalidate requests by local I/O
17 pc = thread location
18 cpuid = cpu where thread was running
19 local = fraction of local read requests
20 alocal = fraction of lcoal read+wback requests
21 tread = thread READ requests
22 twback = thread WB requests
23 sysad = fraction of SysAD bandwidth used
24 tsysad = total thread SysAD traffic (bytes)
25 rsmiss = R10K secondary data cache misses
26 rsqwwb = R10K quadwords written back (scache)

27 snbench.out[0.014,2.045]: 199 ticks, 10.20 ms/tick
28 snbench.out.snp.e445028[0.057,2.019]: 39 ticks, 50.00 ms/tick
29 snbench.out.snp.p443132[0.192,1.971]: 35 ticks, 50.01 ms/tick
30 snbench.out.snp.p445554[0.212,1.971]: 35 ticks, 50.01 ms/tick

Figure 5.5: Sample output from sninfo

94

Chapter 6

Examples

6.1 Memory and Link Utilization

The utilization of the Hub memory/directory unit is a good indicator of the node memory pressure,
i.e., how many memory requests are being serviced by a particular node. The Origin 2000 Hub
ASIC is capable of measuring the number of cycles when the memory unit was idle, blocked,
serving memory requests, or refreshing memory. The memory profiler described in Chapter 5
defines memory utilization as the fraction of time when the memory unit was not idle. Memory
utilization computed in this way is not a linear function of the number of memory requests served
per time unit. The nonlinear effect is due to the internal organization of the memory controller,
which is highly pipelined. When the pipeline is full the memory utilization is 100%; however,
when there are not enough requests to saturate the pipeline, the busy time is counted from the
moment a request enters the pipeline until the response is sent out.

Figure 6.1 illustrates how memory utilization does not correspond to the amount of data re-
turned by the memory unit. The two plots show the memory utilization profile of the snbench
program, which ran five iterations of a simple array reduction loop. In the 1P case, one thread was
placed on the local node. The 2P case shows the profile when two threads were placed on the local
node. In both cases, the reduction loop operated on a unit-stride array of double-precision floating
point values. The first part of each plot corresponds to the snbench initialization phase, during
which the test array is modified and the cache flushed (this is necessary to place the cache lines
in unowned state). The second part of the plot shows five iterations of the reduction loop, each of
which is delimited by a short drop in utilization during which thread synchronization occurs.

In the single-thread case, snbench reported a reduction of 280 MB/s, which corresponds to
≈ 45% of the total memory bandwidth (620 MB/s). However, the measured memory utilization is
fixed at 66%. In the double-thread case, snbench reported a combined reduction of 412 MB/s,
66% of the total memory bandwidth. Again, the memory utilization rate is much higher—85%.
Note how the bandwidth reduction for unit-stride arrays are much lower compared to the results
of the bw-read experiments, which measure the bandwidth on double arrays with stride 16, and
touch only one element in each 128-byte cache line. This reduction in bandwidth is due to the
capacity of the L2 cache bus and to the delays in issuing loads because of arithmetic instructions.

Figure 6.2 compares memory and link utilizations. In this snbench experiment, the test mem-
ory was placed on one node and three threads were placed on neighboring nodes (one per node to

95

0 1 2 3

time (s)

0

20

40

60

80

100

ut
ili

za
tio

n
(%

)
1P
2P

Figure 6.1: Memory utilization for 1- and 2-thread local reduction loop

avoid the SysAD bottleneck). The threads executed five iterations of the bwmp-read experiment.
The memory utilization is firmly pegged at 100%; the experiment reported cumulative memory
bandwidth of 623 MB/s. Since no thread was placed on the remote node, all data was sent over
the outgoing link. For each iteration of the experiment, the outgoing link utilization is ≈ 95%; this
suggests a link bandwidth of 655 MB/s. However, the actual sustained link bandwidth is actually
higher (≈ 693 MB/s); since the link utilization counters are fairly accurate, we suspect that the
difference is due to inaccuracies in snbench multithreaded memory bandwidth measurements.
At the same time, the incoming link utilization was ≈ 10.5%, about one ninth of the outgoing link
utilization. This suggests that the link utilization is proportional to the number of packets sent over
the link. In each iteration of the experiment, memory requests are being sent to the home node over
the incoming link, while the data responses are going out over the outgoing link. Since the exper-
iment places data in the unowned mode, there is no additional traffic besides requests and replies.
Each request consists of a single 128-bit packet; the reply consists of a header packet followed by
eight data packets, which make up one 128-byte cache line.

6.2 Side Effects of Prefetch Instructions

The Origin cache coherence protocol implements three read requests, each one with different se-
mantics. The RDSH request returns the cache line in shared state; the RDEX requests returns the
cache line in exclusive state; and the READ request returns the line in exclusive state unless there
are other sharers, in which case the line is returned as shared. The READ request helps unipro-
cessor applications: since the data are not shared, returning an exclusive copy helps if the line
subsequently becomes a target of a store instruction; upgrading the cache line from exclusive to
modified does not require an external directory transaction. The Hub translates all load instruc-
tions into READ directory requests. Store instructions receive exclusive ownership via the RDEX
request. Instruction fetches are translated into RDSH requests; this does not pose a problem, even
for uniprocessor applications, since the instruction space is treated read-only.

96

0.0 0.5 1.0 1.5 2.0

time (s)

0

20

40

60

80

100

ut
ili

za
tio

n
(%

)
memory
outgoing link
incoming link

Figure 6.2: A comparison of memory and link utilizations

The MIPS R10000 processor implements four flavors of the prefetch instruction. Two fla-
vors of the prefetch instruction are used to place cache lines in a specific way of the two-way
set-associative L2 cache. Of the other two instructions, one is used by the compiler to prefetch
data items on the right-hand side of the assignment: a read prefetch is translated into a RDSH re-
quest. A write prefetch is translated into a RDEX request; as a side effect of the write prefetch,
the R10000 processor places the line in the L2 in the modified state, anticipating that the program
will eventually modify the data. The semantics of the read prefetch instruction differs from the
semantics of load. RDSH requests generated by read prefetches can hurt application performance
in the uniprocessor case.

Figure 6.3 shows the breakdown of directory state for the read/prefetch requests generated by
the uniprocessor STREAM benchmark. The first graph was generated with the STREAM code
compiled without prefetch instructions, while the second graph shows the profile for the code
compiled with prefetch enabled. The first graph shows a mixture of UOWN and EXCL lines, as
expected for the uniprocessor application. The second graph shows the same fraction of UOWN
lines as the first graph; however, the EXCL lines are mostly replaced with the SHRD lines. Why the
difference?

The STREAM benchmark consists of ten itererations of four tests: copy, scale, add, and triad.
The following code fragment shows the kernel of each test (loop constructs have been omitted):

c[i] = a[i]
b[i] = scalar * c[i]
c[i] = a[i] + b[i]
a[i] = b[i] + scalar * c[i]

The UOWN lines are due to the data items written in one kernel and read in the next kernel. For
example, c[i] is the destination in the first test; since all arrays are larger than the L2 cache, the
elements of c[i] are written back to memory and the cache lines are placed in the UOWN state.
The fraction of UOWN hits is the same both in prefetched and non-prefetched case—the number of

97

EXCL
SHRD
UOWN

0 5 10

time (sec)

0

10000

20000

30000

re
qu

es
ts

(a) prefetch disabled

0 5 10

time (sec)

0

10000

20000

30000

(b) prefetch enabled

Figure 6.3: STREAM directory state breakdown

data items written back is the same in both cases. The prefetched case replaces a large share of
EXCL lines with the SHRD lines—this is due to arrays which were read-prefetched in one of the
preceeding kernel: for example, before the start of the third kernel both a[i] and c[i] will have their
data items in SHRD state because they were both prefetched during the execution of the first and
the second kernel. The small portion of EXCL hits is a result of data items that were brought into
the L2 cache as the result of a load instruction instead of a prefetch.

The problem with placing lines in the shared state for an uniprocessor application is due to the
extra invalidate traffic that is generated when the lines in SHRD state are written. The Origin pro-
tocol keeps the sharer list on a per-node instead of a per-cpu basis: the RDEX transactions resulting
from a store or write-prefetch will have to invalidate the other processor on the node where the
STREAM benchmark is running, even though the invalidates are redundant. The extra invalidate
(and the corresponding SysAD occupancy) reduces the bandwidth available for STREAM. How-
ever, even with the extra invalidate traffic, the obtained STREAM bandwidth is higher than when
the prefetch instructions are not used: Figure 6.3 shows that the total run time for case (b) is shorter
than case (a).

6.3 Backoff Transactions

The Origin cache coherence protocol reverts to a strict request/reply protocol under heavy load
when the system encounters a potential deadlock. The three-step intervention and invalidate trans-
actions become four-step backoff intervention and invalidate transactions. The ccNUMA micro-
benchmarks described in Chapter 4 do not evaluate backoff latencies and bandwidths, because
these transactions should occur very rarely and should not have a noticable impact on memory per-
formance. In order to prove that this is indeed the case, the memory profiler was used to measure
the fraction of all directory transactions that revert to a strict request/reply protocol.

We found that the SPLASH FFT and Radix sort kernels up to 32 processors did not produce
a single backoff transaction even for large data sets. The FFT case is not surprising: each thread

98

operates only on a fraction of the input data, which means that the number of sharers for each cache
line is relatively small. On the other hand, the Radix sort kernel has to exchange key histograms
at the end of each local sort phase; the number of sharers is proportional to the number of threads.
Since the histograms are recomputed in every phase the number of invalidations that have to be sent
out is potentially quite large. The lack of backoff transactions in Radix sort could occur because the
histogram data are exchanged between all nodes simultaneously, so that no single node becomes a
hot spot.

We then used the snbench microbenchmarks to set up a pathological case where we expected
to see backoff transactions. This set of experiments placed all the data on a single node; the sharer
threads then all touched all the test data, which had the effect of placing the cache lines in a shared
state with the number of sharers equal to the number of threads. After the initialization phase, the
threads on each node modified disjoint portions of the test data by issuing store instructions which
resulted in a number of invalidate transactions. Since all threads were accessing data on a single
node we expected that the home node would eventually have to run out of its output buffering re-
sources and have to revert to backoff invalidate transactions. We used the memory profiler to count
both the number of incoming messages (broken into the number of read, writeback, and revision
messages) and the number of outgoing messages (again separated into data responses, writeback
acknowledges, interventions/invalidations, and backoff interventions/invalidations). The number
of threads was increased from two to 14 (the results were taken on a 30P system where two pro-
cessors were dedicated to the memory profiler and the master snbench thread). Table 6.1 shows
the observed aggregate read/write bandwidth and the fraction of backoff invalidate transactions.

zero bandwidth (MB/s) read bandwidth (MB/s)
threads RDEX WB % boff RDEX WB % boff

4 275 274 0% 385 92 0%
5 273 274 0% 359 70 0%
6 274 272 0% 333 50 4%
7 269 274 5% 340 55 26%
8 274 274 21% 368 49 59%
9 277 273 31% 379 49 59%
10 276 272 38% 395 42 68%
11 278 277 44% 404 36 74%
12 272 269 46% 407 39 77%
13 291 262 56% 407 31 80%
14 289 262 59% 403 30 80%

Table 6.1: Aggregate memory bandwidth for backoff invalidates

The first group of results shows the observed bandwidths when the threads were in the steady
state of the bw-zero kernel. This kernel modifies cache lines in a large array; each store is
designed to replace one cache line, which results in one RDEX and one WB protocol request. The
RDEX and WB columns show the corresponding read and write bandwidths. (The small variations
in the bandwidth results are because the steady state is relatively short (80–200 ms) and the results
were computed from a 10 ms sampling interval.) There are no backoff transactions when the
number of sharers for each cache line (and the number of threads invalidating them) is six or

99

less; with seven sharers, there is a small fraction of backoff invalidates; eight or more sharers
increases the fraction significantly. With 14 threads invalidating cache lines, the fraction of backoff
invalidates increases to almost 60%.

Surprisingly, the backoff invalidate transactions do not seem to have a strong impact on the
aggregate node bandwidth: in the zero column, the total bandwidth adds to≈ 550 MB/s, regardless
of the number of threads or the fraction of backoff transactions. The bottleneck here is clearly the
memory bandwidth out of a single node. Note that the node read/write bandwidth is considerably
lower than the read bandwidth (measured to be ≈ 620 MB/s). 1

Note that the backoff invalidations result from read-exclusive requests. For the writeback re-
quests, the memory/directory interface updates the memory and sends back a writeback acknowl-
edge. The fraction of backoff transactions is lower than what it could be because the writebacks
use half the node memory bandwidth; the number of read requests that could be processed is
considerably smaller. To estimate the fraction of backoff transactions in the absence of writes, we
have computed the read and writeback bandwidths measured during the cache warmup—before the
timed portion of the bw-zero experiment, the code first modifies all lines in the L2 cache; since
the cache is flushed, there are very few writebacks in this stage. The second set of results shows the
fraction of backoff messages when the read requests are dominant. The writeback requests have
not been entirely eliminated, partly because of cache conflict misses, and partly because the threads
do not synchronize between the cache warmup and the timed phase of the bw-zero experiment.
The second effect is particularly strong with a small number of threads. When the writebacks are
mostly eliminated, the four-step backoff invalidations have a noticable impact on the aggregate
memory bandwidth, which hovers around 440 MB/s. The fraction of backoff transactions peaks
at 80%. Increasing the number of requestor threads is not likely to increase the aggregate band-
width since the memory seems to be running at its peak. On the other hand, increasing the number
of sharers could have an impact on the fraction of backoff transactions because the individual
invalidates, generated from a compact intra-Hub invalidate message, increases the outgoing link
utilization.

A more realistic case that could generate backoff transactions is the NAS CG parallel bench-
mark. This code computes r = bAx, where A is a distributed matrix. Matrices b, x and r are
read by all threads and updated in a distributed manner. Since all cache lines for these matrices
are first read by all nodes, the subsequent updates could potentially generate many invalidates.
McCalpin reported that the NAS CG benchmark on the Origin systems does not scale beyond 32
processors. [26]

6.4 SPLASH-2 FFT

All the experiments described so far used synthetic microbenchmarks that were used to saturate
system resources. We now turn to a simple application to illustrate how the memory profiler can
be used to determine application resource usage and to evaluate the algorithmic trade-offs. We use
the FFT kernel from the SPLASH-2 suite [55] to study the application memory requirements and
to evaluate three alternatives for a matrix transpose algorithm.

1The reduced zero bandwidth could be to one dead cycle for SDRAM turnaround after eight cycles of accessing
SDRAM.

100

The fast Fourier algorithm used in the SPLASH-2 FFT kernel is a complex 1-D version of
the radix-

√
n six-step algorithm described in [3], which is optimized to minimize interprocessor

communication. The six steps in the algorithm are:

1. Transpose the data matrix.

2. Perform a 1-D FFT on each row of the data matrix.

3. Apply the complex roots of unity to the data matrix.

4. Transpose the data matrix.

5. Perform a 1-D FFT on each row of the data matrix.

6. Transpose the data matrix.

There is a barrier before the second and third matrix transpose (steps 4 and 6). The data set for
the FFT consists of the n complex data points to be transformed (generated as a set of random
values), and another n complex data points referred to as the complex roots of unity. Both sets are
organized as

√
n×√nmatrices, and the matrices are partitioned so that every processor is assigned

a continuous set of rows that are allocated in its local memory. Interprocessor communication is
limited to the transpose steps.

Figure 6.4 shows the memory utilization profile on four nodes for the entire duration of a 8-
processor FFT run. The first phase of the execution is the initialization of the roots of unity and the
generation of random input data. The initialization is performed on the main thread, which runs on
processor 0. The memory utilization profiles for each node show that the data set was distributed
equally among the four nodes—the plot from start to ≈ 3 sec shows first utilization on node 0,
then node 1, node 2 and node 3; the utilization has two peaks on each node, the first time when the
application initializes the data for the roots of unity matrix and the second time when it generates
the random data.

The second phase shows the progress of the FFT algorithm. The three peaks in the memory
utilization plot correspond to the matrix transposes. These are the interprocessor communication
phases, where every processor transposes a portion of the data matrix. The two valleys in between
correspond to the 1-D FFT transformation on each (local) row and the application of the roots of
unity. The barriers before the second and third transpose are visible as the sharp drops in memory
utilization.

The transpose algorithm used by the SPLASH-2 FFT kernel works in two phases: first, each
processor transposes a patch (contiguous submatrix) of size

√
n
p
×
√
n
p

from every other proces-
sor, and then transposes the patch locally. The transpose takes advantage of long cache lines by
blocking. The original SPLASH-2 FFT uses staggering to communicate patches between proces-
sors: processor i first transposes a patch from processor i + 1, then from processor i + 2, etc.,
to prevent hotspotting. If the processors move in lockstep, no two processors read from the same
processor’s patch of memory at the same time. We will call this communication pattern the ba-
sic stagger. However, there are no barriers inside the SPLASH-2 FFT transpose algorithm. It is
entirely possible that one or more processors fall behind the others, because it was preempted by
system activity, for example. Since the processors transpose patches in a sequential manner, one
delayed processor could cause a domino effect, and further delay other processors that follow it.

101

0 1 2 3 4 5

time (s)

0

20

40

60

80

100

m
em

or
y

ut
ili

za
tio

n
(%

)

node 0
node 1
node 2
node 3

Figure 6.4: FFT memory utilization profile on four nodes

To avoid this scenario, a second transpose algorithm uses a binary scrambling function to compute
the next processor whose patch is to be transposed; this is the optimized stagger algorithm. Both
staggered transposes are contrasted with the naive matrix transpose where each processor first re-
places a patch from processor 0, then processor 1, and so on. This is the unoptimized transpose
algorithm.

Figures 6.5–6.7 show high-resolution memory utilization profiles for unoptimized transpose,
basic, and optimized staggering, respectively. All figures show the second transpose step in a 16-
processor run for a data set size of 4M elements; each run assigned two threads to each node,
allocating memory on 8 nodes. The memory utilization is shown for even-numbered nodes only.

Not surprisingly, the unoptimized transpose algorithm results in memory hotspots: as the pro-
cessors transpose patches, they first overrun the memory capacity on node 0, then node 1 and so
on. The basic stagger eliminates memory hotspots: during the transpose phase, the memory on
all nodes is utilized evenly. It seems that the basic staggered transpose leaves plenty of memory
bandwidth because the node utilization hardly climbs above 80%; even with two processors pulling
patches of the data matrix from a single node, the aggregate data rate from each node is comparable
to the data rate achieved by a single local processor doing a sum over a unit-stride array (the 1P plot
in Figure 6.1). The FFT transpose does not run at the full memory speed—one reason for this lim-
itation could be the limited bandwidth of the SysAD bus which is shared between two processors
doing the transpose. The other reason could be the decrease in remote memory bandwidth when
threads access memory on remote nodes (a 20–25% bandwidth reduction, shown in Table 4.11).

For runs with a relatively small number of processors, the optimized stagger algorithm does
not seem to improve the performance. In the 16-processor case shown in Figure 6.7, it actually
performs slower than the basic staggered transpose. Additionally, the memory load becomes much
more uneven, especially at the end of the transpose phase. While the load becomes uneven in the
basic stagger as well (most likely because some threads fall behind others), the effects are much
more evident in the optimized stagger. It is not clear whether the optimized stagger will perform
better at larger processor counts. Instead of simply scrambling the order in which other processor’s

102

15.6 15.8 16.0 16.2 16.4

time (s)

0

20

40

60

80

100

m
em

or
y

ut
ili

za
tio

n
(%

)

node 1
node 3
node 5
node 7

Figure 6.5: Unoptimized FFT matrix transpose without staggering

15.4 15.6 15.8 16.0

time (s)

0

20

40

60

80

100

m
em

or
y

ut
ili

za
tio

n
(%

)

node 1
node 3
node 5
node 7

Figure 6.6: FFT matrix transpose with basic staggering

15.8 16.0 16.2

time (s)

0

20

40

60

80

100

m
em

or
y

ut
ili

za
tio

n
(%

)

node 1
node 3
node 5
node 7

Figure 6.7: FFT matrix transpose with optimized staggering

103

patches are transposed, a better approach would be to copy patches in a topology-aware ordering.
However, this is difficult to implement, because the Irix operating system does not provide detailed
routing information to user programs.

Another reason for low memory bandwidth measured in our experiments could be the TLB
miss penalty. The data set of 4M complex elements requires 64 MB for two arrays. With a page
size of 16 KB which was used in our measurements, the TLB reach is only 2 MB (the R10000
processor has 64 TLB entries, each mapping two consecutive pages). McCalpin reported linear
scaling of FFT transpose algorithm on Origin systems up to 64 processors. [26] His algorithm
used barriers inside the transpose phase. At 64P, the transpose time was 1.6 times local copy time.

104

Chapter 7

Conclusion

Cache-coherent nonuniform memory system architectures are becoming both economically fea-
sible and commercially available as the basis for scalable multiprocessors. The shared address
space programming paradigm, while similar to the conventional programming on symetric multi-
processor systems that use a snoopy bus-based cache coherence protocol, nonetheless introduces
subtle differences, which are important for high-performance computing on ccNUMA systems.
The nonuniform memory access times, which depend on the distance between the requestor and
the home node, require that the user pays attention to data placement, a requirement not present
in traditional SMP systems. Scalable multiprocessor systems replace the central bus with a set
of distributed resources; while the individual bandwidth of each processor bus, memory port and
interconnect link is smaller than its equivalent in a SMP system, the aggregate capacity far exceeds
the capacity of the largest shared resource in a conventional SMP system. However, distributed
resources introduce a possibility of distributed bottlenecks. Tools are needed which help the users
determine application resource usage and detect potential bottlenecks. The work in this thesis
focused on the SGI Origin 2000, one of the first commercially successful large-scale ccNUMA
multiprocessors.

We developed a suite of microbenchmarks tailored for the ccNUMA environment and for the
directory-based cache coherence protocol used by the Origin. These microbenchmarks were used
to analyze the performance of a variety of Origin systems; we focused on memory latency and
bandwidth, and how they interact with protocol transactions and design trade-offs. The snbench
microbenchmark suite is capable of placing memory and threads anywhere in the system; the test
memory can be placed in any of the composite cache coherence states before executing the test
kernels—this allows snbench to generate almost every cache-coherence transaction. The latency
of each transaction is estimated with two values: the back-to-back latency establishes the upper
bound which includes contention for limited resources such as cache and memory bus occupancy;
the restart latency defines the minimum time for the processor to issue a request and receive the
critical word. We have found that the restart characteristics of the two processors used in the Origin
systems, the R10000 and R12000, differ due to the internal implementation details.

The microbenchmarks were used to evaluate a number of different Origin systems. First, we
compared the local memory characteristics of four different generations of node boards used in
Origin systems. We found that the local results for the 195 MHz R10000 systems matched the
results from a previous study [19]; we also present results from 250 MHz R10000 systems, and the
300 and 400 MHz R12000 systems. In the later generations of the node boards, the performance

105

is limited by the memory system, as opposed to the processor limitations in early systems. The
next group of measurements focused on remote transactions, which involve messages sent over
the interconnect network. We found that the remote penalty was underestimated in the existing
Origin literature and that the router delay is not uniform in all systems, depending on the size of
the system (i.e., whether it requres a metarouter or not) and the effects of different cable lengths.
Interventions are another group of transactions analyzed with snbench. Unlike remote transac-
tions, where we were able to model the latency relatively accurately with just a few parameters, the
intervention transactions proved to be very hard to model. The placement of the three participants
(local and remote processor and the home node) influenced the results, especially when the local
and remote processor were placed on the same node. (The nonuniform results are due to the mul-
tiplexed SysAD bus.) We did find placements which exhibited uniform timings: clean-exclusive
transactions incur 220–250 ns additional latency compared to similar unowned transactions. Dirty-
exclusive transactions incur 330–690 ns extra latency; the timing is much more sensitive to the
placement. The last group of transactions evaluated with snbench were the invalidations. We
found that the invalidate latencies depend on the number of sharers: the additional overhead is
30% for 32 sharers and 50% for 64 sharers. The corresponding bandwidth reductions are even
more pronounced.

Applications that generate significant amounts of memory traffic are very sensitive to the
NUMA environment. We have developed a device driver which lets a program access the hard-
ware event counters in various Origin ASICs. A separate program acts as a memory profiler: it
samples the event counters and periodically stores them in a trace file. The profiler can use Origin
Hub and Router event counters and the R10000/R12000 processor event counters. In this way, an
application can be profiled after it finishes execution. The snperf memory profiler defines the
notion of an object that corresponds to a particular system resource (a node or a network link) or a
thread in the application program. In the post-mortem analysis, a number of different metrics can
be computed from the event trace files; a metric can be specific to a node, a thread, a network link,
or it can be a global metric which is derived from several other metrics. In addition to application
profiling, the memory profiler can be used in a standalone mode to print interactive values of the
hardware event counters.

We provide several examples to show the use of the memory profiler. First, we used snbench
bandwidth kernels to evaluate the memory and link utilization metrics. We found that the link
bandwidth is slightly higher than the memory bandwidth. We show how STREAM kernels com-
piled with and without prefetch instructions results in a significantly different execution profile
shown by the hardware event counters. We also attempted to evaluate the relative frequency of
backoff transactions, which are used by the Origin directory cache coherence protocol to avoid
deadlock. We found no evidence of backoff transactions during the execution of SPLASH-2 ker-
nels on systems up to 32 processors. Attempts to generate backoff transactions with artificial
thread and data placements show that backoff transactions can occur. However, our measurements
were obtained on synthetic codes which involved many sharers and a high number of participating
threads. We did not investigate the backoff behavior on other codes which potentially generate
large backoff traffic (such as the NAS CG parallel benchmark). Interestingly, the backoff transac-
tions do not have a significant impact for write operations; the impact on read operations is higher.
Finally, we used node memory utilization to profile the execution of the SPLASH-2 FFT kernel.
The utilization plot clearly identifies various application phases; we also found that the basic stag-
ger algorithm used in the transpose phase performs well on systems up to 32 processors, while the

106

“naive” implementation without staggering results in memory hot spots.
The snperf memory profiler is clearly a research tool. It requires an intimate knowledge

of the Origin system architecture, and it lacks a user interface and a graphic display of its re-
sults. However, we believe that the fundamental approach is sound. In a system with distributed
resources, the ability to determine the utilization of various system resources and to correlate per-
thread and system-wide metrics is essential for performance analysis on large-scale systems. While
additional hardware support for performance analysis is needed to increase the accuracy of the re-
sults, we believe that the data offered by the Origin event counters is a step in the right direction.

107

Chapter 8

Acknowledgments

This thesis would not have been possible without the help of Silicon Graphics, its engineers and
its special corporate culture. My internships at SGI were all unique learning experiences, and I
feel lucky to be part of that culture. At SGI, many people helped me understand various aspects
of Origin hardware and software design. Jeff Kuskin, Jim Laudon, Greg Marlan, Randy Passint,
Doug Solomon, Swami Venkataraman and Mike Woodacre answered many questions I had about
the Origin hardware design; Casey Leedom and Len Widra helped me navigate the Irix operating
system; Dave Anderson, Jim Dehnert, and Mike Murphy put the compiler in the perspective; Tom
Elken kindly allowed me to use the computing resources of his group. Jeff Gibson, a fellow SGI
intern, helped me tame the SPLASH-2 benchmarks and discussed ideas about ccNUMA memory
performance analysis. SGI also allowed me to put this work in the public domain, and let me to use
their illustrations in this thesis. (Figures 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, and 3.10 were taken
from the Origin technical manuals. Copyright c© 2000 Silicon Graphics, Inc. Used by permission.
All rights reserved.)

At the University of Utah, this work was sponsored by the Center for the Simulation of Acci-
dental Fires and Explosions (C-SAFE). Thanks to Steven Parker I was able to use the computing
resources of the Scientific Computing and Imaging Institute.

Finally, this thesis would not exist without the members of my thesis committee. Al Davis
convinced me that supercomputers were cool, and provided support and guidance during research
and writing. John McCalpin pointed out the problem that needed to be solved, and taught me many
things about computer benchmarks and performance analysis. Wilson Hsieh’s thorough reading of
the thesis drafts and his invaluable feedback and support made the process of writing much easier.

108

Appendix A

128-Processor System Results

Table A.1 presents combined remote and invalidation results collected on stinger, a 128-processor
300 MHz R12000 system. Similar to the results in Tables 4.13 and 4.19, the home node is node 1—
all the data was allocated there. The first column groups the node number n and the distance to
the home node h. The second column group shows remote back-to-back and restart latencies for
each node in the system; the data is in unowned state. Similarly, the third column group gives
remote bandwidths for unowned lines. The last two column groups give intervention latencies and
bandwidths. In these experiments, the local thread was placed on the home node; the intervention
results in each row were obtained by placing lines in shared state where the list of sharers included
all the nodes up to the node in the current row. The number of sharers is given in the #sh column.

Figure A.1 shows remote results in a graphical form. Figures A.2 and A.3 show intervention
latency and bandwidth results, respectively.

109

Table A.1: Remote and intervention results for a 128P system

stinger UOWN latency UOWN bandwidth SHRD latency SHRD bandwidth
n h #sh b-to-b restart READ zero RDEX UPGRD RDEX UPGRD zero

1 0 1 384 297 557 266 605 341 327 384 214
0 1 2 763 675 437 232 753 441 285 308 205
2 2 3 908 822 417 242 869 503 251 267 194
3 2 4 909 813 417 226 887 517 244 259 186
4 2 5 915 829 415 238 917 535 237 250 178
5 2 6 919 828 422 235 937 544 227 245 171
8 2 7 916 830 419 228 955 553 220 239 164
9 2 8 917 830 419 237 971 571 211 233 158
6 3 9 1066 979 373 221 1070 639 194 208 150
7 3 10 1067 971 376 221 1092 668 187 200 145
10 3 11 1069 982 371 221 1111 696 181 195 141
11 3 12 1069 981 372 228 1140 717 174 189 136
12 3 13 1077 990 371 225 1168 740 168 182 132
13 3 14 1075 990 373 235 1188 769 161 176 127
16 3 15 1128 1039 355 213 1207 804 155 167 123
17 3 16 1128 1039 356 221 1215 832 149 160 120
32 3 17 1115 1026 357 225 1230 859 144 155 116
33 3 18 1112 1024 358 224 1248 887 139 149 113
48 3 19 1104 1011 362 228 1266 911 134 143 110
49 3 20 1104 1012 362 225 1284 939 130 138 107
14 4 21 1221 1128 337 220 1342 987 125 132 104
15 4 22 1218 1125 337 220 1363 1018 121 127 101
18 4 23 1277 1184 324 214 1391 1047 117 123 99
19 4 24 1277 1183 324 210 1434 1086 114 119 96
20 4 25 1289 1199 322 218 1456 1113 111 115 94
21 4 26 1284 1196 323 220 1476 1146 108 112 92
24 4 27 1277 1191 324 212 1498 1179 105 109 90
25 4 28 1278 1189 324 212 1526 1213 102 106 88
34 4 29 1264 1171 326 209 1549 1252 100 102 86
35 4 30 1262 1172 327 213 1572 1286 97 99 84
36 4 31 1272 1186 326 221 1588 1321 95 97 83
37 4 32 1272 1186 325 213 1608 1356 92 94 81
40 4 33 1271 1183 326 207 1620 1395 90 92 79
41 4 34 1271 1184 326 217 1645 1432 88 89 78
50 4 35 1254 1159 329 214 1663 1464 86 87 76
51 4 36 1254 1165 329 211 1697 1498 85 85 75
52 4 37 1260 1174 329 207 1712 1533 83 83 74
53 4 38 1261 1174 328 220 1724 1569 81 82 72
56 4 39 1261 1173 329 218 1756 1608 79 80 71

110

stinger UOWN latency UOWN bandwidth SHRD latency SHRD bandwidth
n h #sh b-to-b restart READ zero RDEX UPGRD RDEX UPGRD zero

57 4 40 1260 1170 329 216 1775 1642 78 78 70
22 5 41 1432 1347 297 204 1811 1688 76 76 68
23 5 42 1431 1346 296 197 1849 1738 74 74 67
26 5 43 1426 1341 297 210 1866 1772 72 72 66
27 5 44 1425 1333 297 201 1893 1803 71 71 65
28 5 45 1436 1345 296 201 1923 1835 69 70 64
29 5 46 1435 1346 296 196 1941 1877 69 69 63
38 5 47 1416 1330 299 203 1967 1915 67 67 62
39 5 48 1416 1327 298 193 1978 1951 65 66 61
42 5 49 1424 1343 296 197 2011 1989 65 65 60
43 5 50 1430 1344 296 204 2026 2015 63 63 59
44 5 51 1430 1344 296 206 2068 2052 63 63 58
45 5 52 1430 1339 297 206 2075 2072 62 62 57
54 5 53 1410 1324 301 215 2111 2119 60 61 57
55 5 54 1438 1317 301 205 2120 2163 59 59 56
58 5 55 1410 1316 302 210 2148 2196 58 58 55
59 5 56 1410 1317 300 202 2167 2236 57 57 54
60 5 57 1418 1327 299 202 2197 2265 56 57 54
61 5 58 1415 1330 299 203 2213 2287 55 56 53
30 6 59 1581 1496 272 188 2281 2352 54 55 52
31 6 60 1581 1486 273 190 2295 2389 54 54 51
46 6 61 1576 1483 274 189 2326 2421 53 53 51
47 6 62 1575 1481 274 197 2349 2464 52 52 50
62 6 63 1569 1483 275 195 2364 2496 51 51 49
63 6 64 1568 1480 275 191 2387 2534 50 50 49

111

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6

router hops

la
te

n
cy

 (
n

s)

0

100

200

300

400

500

600

b
an

d
w

id
th

 (
M

B
/s

)

lmbench-read

restart-read

bw-read

bw-rdex

bw-zero

Figure A.1: 128-processor system remote latency and bandwidth chart

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

sharers

la
te

n
cy

 (
n

s)

lmbench-rdex/UOWN

lmbench-rdex/SHRD

lmbench-upgrd/SHRD

Figure A.2: 128-processor system intervention latency chart

112

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

sharers

b
an

d
w

id
th

 (
M

B
/s

)

bw-rdex/UOWN

bw-rdex/SHRD

bw-zero/UOWN

bw-zero/SHRD

bw-upgrd/SHRD

Figure A.3: 128-processor system intervention bandwidth chart

113

Bibliography

[1] AGARWAL, A., BIANCHINI, R., CHAIKEN, D., JOHNSON, K. L., KRANZ, D., KUBIA-
TOWICZ, J., LIM, B.-H., MACKENZIE, K., AND YEUNG, D. The MIT Alewife machine:
Architecture and performance. In Proceedings of the 22nd International Symposium on Com-
puter Architecture (May/June 1995), pp. 2–13.

[2] ANDERSON, J., BERC, L. M., DEAN, J., GHEMAWAY, S., HENZINGER, M. R., LEUNG,
S.-T., SITES, R. L., VANDEVOORDE, M., WALDSPURGER, C. A., AND WEIHL, W. E.
Continuous profiling: Where have all the cycles gone? In ACM Transactions on Computer
Systems (November 1997), pp. 357–390.

[3] BAILEY, D. H. FFTs in external or hierarchical memory. Journal of Supercomputing 4, 1
(March 1990), 23–35.

[4] BELL LABORATORIES. prof(1) - display profile data.

[5] BERRENDORF, R., AND MOHR, B. ”PCL—the performance counter library: A common
interface to access hardware performance counters on microprocessors”. http://www.
kfa-juelich.de/zam/PCL.

[6] CARTER, J. B., BENNETT, J. K., AND ZWAENEPOEL, W. Implementation and performance
of Munin. In Proceedings of the 13th Symposium on Operating Systems Principles (October
1991), pp. 152–164.

[7] CHANDRA, R., CHEN, D.-K., COX, R., MAYDAN, D. E., NEDELJKOVIC, N., AND AN-
DERSON, J. M. Data distribution support on distributed shared memory multiprocessors. In
Proceedings of the SIGPLAN ’97 Conference on Programming Language Design and Imple-
mentation (Las Vegas, NV, June 1997).

[8] CLARK, R., AND ALNES, K. An SCI chipset and adapter. In Symposium Record, Hot
Interconnects IV (August 1996), pp. 221–235.

[9] CONVEX COMPUTER CORPORATION. Exemplar Architecture, 1993.

[10] CRAY RESEARCH, INC. UNICOS Performance Utilities Reference Manual, January 1994.
Cray Research Publication SR-2040.

[11] DEAN, J., HICKS, JAMEY WALDSPURGER, C. A., WEIHL, W. E., AND CHRYSOS, G.
ProfileMe: Hardware support for instruction-level profiling on out-of-order processors. In

114

Proceedings of the 30th Annual International Symposium on Microarchitecture (December
1997).

[12] DIGITAL EQUIPMENT CORPORATION. pfm(5) - the 21064 performance counter pseudo
device.

[13] FRANK, S., BURKHARDT III, H., AND ROTHNIE, J. The KSR1: Bridging the gap between
shared memory and MPPs. In Proc. COMPCON, Digest of Papers (1993), pp. 475–480.

[14] GALLES, M. Scalable pipelined interconnect for distributed endpoint routing: the SGI SPI-
DER chip. In Hot Interconnects ’96 (1996).

[15] GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K. gprof: A call graph execution
profiler. In Proceedings of the ACM SIGPLAN Symposium on Compiler Construction ’82
(Boston, MA, June 1982), pp. 120–126.

[16] GUSTAFSON, P. E. ”MUTT: Memory utilization tracking tool”. http://www.lanl.
gov/orgs/cic/cic8/para-dist-team/mutt/muttdoc.html.

[17] GUSTAVSON, D. The scalable coherence interface and related standards project. IEEE Micro
12, 1 (1992), 10–22.

[18] HAGERSTEN, E., LANDIN, A., AND HARIDI, S. DDM—a cache only memory architecture.
IEEE Computer 25, 9 (September 1992), 44–54.

[19] HRISTEA, C., LENOSKI, D., AND KEEN, J. Measuring memory hierarchy performance of
cache-coherent multiprocessors using micro benchmarks. In Proceedings of Supercomputing
’97 (San Jose, CA, November 1997).

[20] HUNT, D. Advanced performance features of the 64-bit PA-8000. COMPCON’95, http:
//www.convex.com/tech_cache/technical.html, March 1995.

[21] KELEHER, P., COX, A. L., DWARKADAS, S., AND ZWAENEPOEL, W. TreadMarks: Dis-
tributed shared memory on standard workstations and operating systems. In Proceedings of
1994 Winter USENIX (January 1994), pp. 15–132.

[22] KUSKIN, J., OFELT, D., HEINRICH, M., HEINLEIN, J., SIMONI, R., GHARACHORLOO,
K., CHAPIN, J., NAKAHIRA, D., BAXTER, J., HOROWITZ, M., GUPTA, A., ROSENBLUM,
M., AND HENNESSY, J. The stanford flash multiprocessor. In Proceedings of the 21st In-
ternational Symposium on Computer Architecture (Chicago, IL, Apr. 18–21, 1994), pp. 312–
313.

[23] LENOSKI, D. The Stanford DASH Multiprocessor. PhD thesis, Computer Systems Labora-
tory, Stanford University, 1992.

[24] LI, K., AND HUDAK, P. Memory coherence in shared virtual memory systems. ACM
Transactions on Computer Systems 7, 4 (1989), 321–359.

115

[25] LOVETT, T., AND CLAPP, R. STiNG: A CC-NUMA computer system for the commercial
marketplace. In Proceedings of the 23rd International Symposium on Computer Architecture
(May 1996), pp. 308–317.

[26] MCCALPIN, J. D. Personal communication.

[27] MCCALPIN, J. D. Memory bandwidth and machine balance in current high performance
computers. IEEE Technical Committee on Computer Architecture Newsletter (December
1995).

[28] MCVOY, L., AND STAELIN, C. lmbench: Portable tools for performance analysis. In Pro-
ceedings of 1996 Winter USENIX (San Diego, CA, January 22-26, 1996).

[29] MUCCI, P. J., KERR, C., BROWNE, S., AND HO, G. ”PerfAPI: Performance data standard
and api”. http://icl.cs.utk.edu/˜mucci/pdsa.

[30] PAPAMARCOS, M., AND PATEL, J. A low overhead coherence solution for multiproces-
sors with private cache memories. In Proceedings of the 11th International Symposium on
Computer Architecture (June 1984), pp. 348–354.

[31] PLANK, J. S. Jgraph — a filter for plotting graphs in PostScript. In Proceedings of 1993
Winter USENIX (San Diego, CA, January 25-29, 1993), pp. 63–68.

[32] REINHARDT, S. K., LARUS, J. R., AND WOOD, D. A. Tempest and Typhoon: User-
level shared memory. In Proceedings of the 21st International Symposium on Computer
Architecture (April 1994), pp. 325–337.

[33] SAAVEDRA, R. H. CPU Performance Evaluation and Execution Time Prediction Using
Narrow Spectrum Benchmarking. PhD thesis, University of California, Berkeley, 1992. Tech.
Rept. No. UCB/CSD 92/684.

[34] SAAVEDRA, R. H., GAINES, R. S., AND CARLTON, M. J. Micro benchmark analysis of
the KSR-1. In Proceedings of Supercomputing ’93 (Portland, OR, November 1993), pp. 202–
213.

[35] SAAVEDRA, R. H., AND SMITH, A. J. Analysis of benchmark characteristics and bench-
mark performance prediction. ACM Transactions on Computer Systems 14, 4 (1996), 334–
348.

[36] SAULSBURY, A., WILKINSON, T., CARTER, J., AND LANDIN, A. An argument for sim-
ple COMA. In Proceedings of the First IEEE Symposium on High Performance Computer
Architecture (January 1995), pp. 276–285.

[37] SGI. dplace(1) - a NUMA memory placement tool. Man page.

[38] SGI. hwgraph(4) - hardware graph. Man page.

[39] SGI. hwgraph_intro(D3X) - hardware graph overview for device driver writers. Man
page.

116

[40] SGI. libfetchop(3) - atomic synchronization. Man page.

[41] SGI. migration(5) - dynamic memory migration. Man page.

[42] SGI. mmci(5) - memory management control interface. Man page.

[43] SGI. perfex(1) - Command line interface to processor event counters. Man page.

[44] SGI. r10k_counters(5) - Programming the processor event counters. Man page.

[45] SGI. replication(5) - memory replication. Man page.

[46] SGI. SpeedShop(1) - an integrated package of performance tools. Man page.

[47] SGI. topology(1) - machine topology information. Man page.

[48] SGI. MIPS R10000 Microprocessor User’s Manual, Version 2.0, October 1996.

[49] SGI. Origin and Onyx2 Programmer’s Reference Manual, 1996. Document no. 007-3410-
001.

[50] SGI. Origin and Onyx2 Theory of Operations Manual, 1997. Document no. 007-3439-002.

[51] SGI. SpeedShop User’s Guide, April 1999. Document no. 007-3311-006.

[52] STALLINGS, W. Data and Computer Communications. Macmillan Publishing Co., 1988.

[53] TAMIR, Y., AND CHI, H.-C. Symmetric crossbar arbiters for VLSI communication switches.
IEEE Transactions on Parallel and Distributed Systems 4, 1 (1993), 13–27.

[54] WILLIAMS, T., AND KELLEY, C. gnuplot(1) - an interactive plotting program. Man
page.

[55] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. The SPLASH-2
programs: Characterization and methodological considerationss. In Proceedings of the 22nd
International Symposium on Computer Architecture (June 1995).

[56] YEAGER, K. C. Personal communication.

[57] ZAGHA, M., LARSON, B., TURNER, S., AND ITZKOWITZ, M. Performance analysis using
the MIPS R10000 performance counters. In Proceedings of Supercomputing ’96 (Pittsburgh,
PA, November 1996).

117

