
R10000™ Processor Architecture

Origin™ Servers Technical Report 53

Chapter 3 R10000™ Processor Architecture

The R10000 microprocessor from MIPS Technologies is a four-way superscalar
architecture that fetches and decodes four instructions per cycle. Each decoded
instruction is appended to one of three instruction queues, and each queue can perform
dynamic scheduling of instructions. The queues determine the execution order based on
the availability of the required execution units and the required data. Instructions are
initially fetched and decoded in order, but they can be executed and completed out-of-
order, allowing the processor to have up to 32 instructions in various stages of
execution. The impressive integer and floating-point performance of the R10000 make it
ideal for systems ranging from supercomputers, technical computing servers, and
engineering workstations, to 3-D graphics workstations, database servers, and multi-
user systems. The high throughput is achieved through the use of wide, dedicated data
paths and large on-chip and off-chip caches.

The R10000 microprocessor implements the MIPS IV instruction set architecture.
MIPS IV is a superset of the MIPS III instruction set architecture and is backward
compatible. At 195MHz, the R10000 microprocessor delivers peak performance of 780
MIPS (390 MFLOPS) with a peak data transfer rate of 2.08 GB per second to secondary
cache. The R10000 microprocessor is available in a 599 CLGA package and is
fabricated using a CMOS sub-.35-micron silicon technology.

Key features of the R10000 include:

• ANDES Advanced Superscalar Architecture

– Supports four instructions per cycle

– Two integer and two floating-point execute instructions plus one load/store per
cycle

• High-performance design

– 3.3 volt technology

– Out-of-order instruction execution

– 128-bit dedicated secondary cache data bus

– On-chip integer, FP, and address queues

– Five separate execution units

– MIPS IV instruction set architecture

• High Integration Chip-Set

– 32KB 2-way set associative, 2-way interleaved data cache with LRU replacement
algorithm

– 32KB 2-way set associative instruction cache

– 64-entry translation lookaside buffer

– Dedicated second-evel cache support

• Second-Level Cache Support

– Dedicated 128-bit data bus

– Generation of all necessary SSRAM signals

R10000™ Processor Architecture

54 Origin™ Servers Technical Report

– 2.08GB per second peak data transfer rate

– Programmable clock rate to SSRAM

• Compatible with Industry Standards

– ANSI/IEEE Standard 754-1985 for binary floating-point arithmetic

– MIPS III instruction set compatible

– Conforms to MESI cache consistency protocol

– IEEE Standard 1149.1/D6 boundary scan architecture

• Avalanche Bus System Interface

– Direct connect to SSRAM

– Split transaction support

– Programmable interface

3.1 Modern Computing Challenges

The current generation of today’s microprocessor architectures outperforms its earlier
counterparts by orders of magnitude. Such radical increases in performance, speed, and
transistor count from generation to generation, often separated by only a few years, can
seem overwhelming to the casual observer. Modern microprocessors perform address
generation and contain arithmetic logic units, register files, and a system interface. Most
have on-chip caches, a translation lookaside buffer (TLB), and almost all current
architectures have on-chip floating-point units.

Different design techniques successfully perform these basic functions, but the nature
and existence of these functions lead to inherent problems that must be overcome to
achieve good performance, in particular, the disparity between CPU and DRAM
memory speeds. Section 3.2 on page 57 discusses some of the techniques used to
overcome these challenges. The Section 3.3 on page 61 discusses how the MIPS
R10000 microprocessor implements these techniques discussed in Section 3.2.

3.1.1 Memory and Secondary Cache Latencies

Early microprocessors had to fetch instructions and data directly from memory.
Historically, memory access times have lagged far behind the data-rate requirements of
the processor. After issuing a request for data the processor had to wait long periods of
time for the data to return. This severely hampered the processor’s ability to operate
efficiently at the speeds for which it was designed.

Implementation of off-chip secondary cache memory systems has helped fix this
problem. A cache memory system comprising a small amount of memory, normally 32–
256-KB, contains a block of memory addresses comprising a small portion of main
memory. Cache memory has much faster access times and can deliver data to the
processor at a much higher rate than main memory.

On-chip cache memory systems can greatly improve processor performance because
they often allow access to be completed in one cycle. Performance improvements of on-
chip cache systems have caused many architectures to dedicate increasing amounts of

R10000™ Processor Architecture

Origin™ Servers Technical Report 55

space and logic to cache design. Many cache system designs require up to half of the
total die. Performance is highest when the application can run within the cache.
However, when the application is too large for the cache, performance decreases
significantly. Figure 3-1 on page 55 shows the relationship between application
performance and size.

Figure 3-1 Application Performance versus Size

The on-chip cache contains a range of addresses that comprise a subset of those
addresses in the secondary cache. In turn, the secondary cache contains a range of
addresses that comprise a subset of those addresses in main memory. Figure 3-2 shows
the relationship between caches in a typical computer system.

Appl icat ion Size

A
p

p
li

c
a

ti
o

n
 P

e
rf

o
rm

a
n

c
e

Desktop
productivity

SPEC
benchmarks

Tradi t ional
microprocessor R10000

Database
Decision support

Technical
Scientific

Application is too
large to fit in cache

R10000™ Processor Architecture

56 Origin™ Servers Technical Report

Figure 3-2 Memory Relationships in a Typical Computer System

As beneficial as on-chip cache systems are to processor performance, current
semiconductor technology and available transistor counts limit cache size. Currently
64KB (32KB Data, 32KB Instruction) is a large on-chip cache requiring several million
transistors to implement.

Limits on the size of on-chip caches (limited by chip size and trade-offs made for chip
real eastate) place increasing importance on secondary cache systems, where cache size
is only limited by the market into which the product is being sold. However, cache
memory has its limitations.

The access times of most currently available RAM devices are long relative to processor
cycle times and force the memory system designer to find ways to hide them.
Interleaving the cache system is one way to accomplish this. Interleaved cache memory
systems allow processor memory requests to be overlapped. Both cache and main
memory can be interleaved. Two-way and four-way interleaving is common in memory
systems. Increasing the amount of interleaving allows the ability to hide more of the
access and recovery times of each bank, but increased complexity is required to support
them. See “Interleaved Memory” on page 59 for a further discussion of memory
interleaving.

3.1.2 Data Dependencies

In a computer program, instructions are fetched from the instruction cache, decoded,
and executed. The corresponding data is often fetched from a register, manipulated
within an ALU, and the result placed either in the same register or perhaps in another
register.

CPU

On-Chip Cache
8–64KB

(Typical) Secondary Cache

32KB - 4MB
(Typical)

Main Memory

1MB - 1GB
(Typical)

Increasing Memory Latency

R10000™ Processor Architecture

Origin™ Servers Technical Report 57

Data dependency occurs when the next instruction in the sequence requires the result of
the previous instruction before it can execute. This can impact the performance of
instructions requiring many cycles, as execution of the second instruction waits until the
first instruction is done and the result written to the register. Some dependencies can be
avoided by rearranging the program so that the result of a given instruction is not used
by the next few instructions.

Out-of-order execution using register-renaming helps alleviate data dependency
problems. Register renaming is explained in Section 3.2.1 on page 58.

3.1.3 Branches

All computer programs contain branches. Some branches are unconditional, meaning
that the program flow is interrupted as soon as the branch instruction is executed. Other
branches are conditional, meaning that the branch is taken only if certain conditions are
met. Program flow interruption is inherent to all computer software, and the
microprocessor hardware has little choice but to deal with branches in the most efficient
way possible.

When a branch is taken, the new address where the program is to resume may or may
not reside in the secondary cache. The latency is increased depending on where the new
instruction block is located. Since the access times of the main memory and secondary
cache are far greater than the on-chip cache, as shown in Figure 3-2, branching can
often degrade processor performance.

The branching problem is further compounded in superscalar machines where multiple
instructions are fetched every cycle and each instruction progresses through a pipeline
toward execution. At any given time, depending on the size of the pipeline, numerous
instructions can be in various stages of execution. When a conditional branch
instruction is executed, it is not known until many cycles later, when the instruction is
actually executed, whether or not the branch should have been taken.

Implementation of branching is an important architectural issue. To improve
performance, many current architectures incorporate branch prediction circuitry, which
can be implemented in a number of ways. Section 3.2.2 on page 59 discusses some
commonly used branch prediction techniques.

3.2 Tolerating Memory Latency

Memory latency reduction is a critical issue in increasing processor performance. This
section discusses some of the common architectural techniques used to reduce memory
latency.

R10000™ Processor Architecture

58 Origin™ Servers Technical Report

3.2.1 High-Bandwidth Secondary Cache Interface

In an ideal secondary cache interface, the cache receives a data request from the
processor and can always return data in the following clock. This is referred to as a true
zero wait-state cache. To design a secondary cache that can approach zero wait state
performance, the processor’s system interface must be designed such that data can be
transferred at the maximum rate allowed.

The address and data buses of most processors interface to the entire computer system.
Any number of different devices can be accessed by the processor at any given time.

Whenever an on-chip cache miss occurs, an address is driven out onto the bus and the
secondary cache is accessed, transferring the requested data to the on-chip cache.

If an on-chip cache miss occurs in a shared-bus system, and the processor is using the
external bus to read or write some other device, the access to secondary cache must wait
until the external data and address buses are free. This can take many cycles depending
on the peripheral being accessed.

In a dedicated bus system the data, address, and control buses for the secondary cache
are separate from those that interface to the rest of the system. These busses allow
secondary cache accesses to occur immediately following an on-chip cache miss,
despite what else is happening in the system.

Figure 3-3 on page 58 is a block diagram of both a shared and dedicated secondary
cache interface. Refer to Section 3.9.1 on page 70 for more information on the dedicated
secondary cache interface of the R10000 microprocessor.

Figure 3-3 Dedicated Secondary Cache Bus Interface

Main
Memory

I/O

CPU

Data
Control
Address

Shared Cache Bus Interface

Secondary
Cache

Int I/O

CPU

SysData
SysControl
SysAddress

Dedicated Cache Bus Interface

Secondary
Cache

Int

CacheData
CacheCntrl
CacheAddr

Main
Memory

R10000™ Processor Architecture

Origin™ Servers Technical Report 59

3.2.2 Block Accesses

When an on-chip cache miss results in the secondary cache being accessed, a
programmable number of bytes is transferred with each cache access. This number is
referred to as the cache line size. A common line size for many current architectures is
32 bytes.

The number of accesses required to perform a line fill depends on the size of the
external data bus of the processor. For example, a processor with a 64-bit data bus
interfacing to a 64-bit wide memory performing a 32-byte (256 bits) cache line fill
would require four secondary cache accesses to fetch all the data. To accomplish this the
processor must generate four separate addresses and drive each one out onto the external
address bus, along with the appropriate control signals.

Block access mode allows the processor to generate only the beginning address of the
sequence. The remaining three addresses are generated either by cache control logic, or
within the cache RAM itself. The R10000 microprocessor system interface supports
block accesses.

3.2.3 Interleaved Memory

Interleaving is a technique used to increase memory bandwidth. The concept of
interleaving can be applied both to secondary cache and main memory.

Simple memory systems have one bank of memory. If the memory is accessed, some
amount of time must pass before it can be accessed again. This time depends both on the
system design as well as the speed of the memory devices being used. Having multiple
banks allows bank accesses to be overlapped. The ability to overlap bank accesses helps
hide these inherent memory latencies and becomes increasingly important as the
amount of data requested increases.

A typical interleaved memory system has even and odd banks. For example, the
processor places a request for data at an even address. The memory controller then
initiates a cycle to the even bank. Once the address has been latched by the memory
control logic, the processor can generate a new address, often in the next clock. If the
new address is to the odd bank of memory, memory access can begin immediately as the
odd bank is currently idle. By the time the access time to the even bank has elapsed and
the data has been returned, the odd bank is also ready to return data. Zero-wait-state
performance is achievable as long as sequential accesses to the same bank are minimal.

Two-way and four-way interleaved memory systems are the most common. The number
of banks and the data bandwidth of each is often determined by the processor. For
example, if the cache line size of the processor is 32 bytes, each time a memory access
is initiated 32 bytes must be returned to the processor. Since 32 bytes = 256 bits, a
common approach is to have four banks of 64 bits each. This scheme would require a
processor with a 64-bit data bus in order to alleviate any external multiplexing of data.
Each bank is accessed in an order determined by the processor. Section 3.5.1 on page 63
discusses the interleaving characteristics of the R10000 microprocessor.

R10000™ Processor Architecture

60 Origin™ Servers Technical Report

3.2.4 Non-Blocking Cache

In a typical implementation, the processor executes out of the cache until a cache miss is
taken. The processor then stalls and a number of cycles elapse before data is returned to
the processor and placed in the on-chip cache, allowing execution to resume. This type
of implementation is referred to as a blocking cache because the cache cannot be
accessed again until the cache miss is resolved, nor can the processor execute new
instructions.

Non-blocking caches allow subsequent cache accesses to continue even though a cache
miss has occurred. Locating cache misses as early as possible and performing the
required steps to solve them is crucial in increasing overall cache system performance.
Figure 3-4 shows an example of how a blocking and non-blocking cache would react to
multiple cache misses.

Figure 3-4 Multiple Misses in a Blocking and Non-Blocking Cache

The major advantage of a non-blocking cache is the ability to stack memory references
by queuing up multiple cache misses and servicing them simultaneously. The sooner the
hardware can begin servicing the cache miss, the sooner data can be returned.

3.2.5 Prefetch

Prefetching data is a technique whereby the processor can request a cache block prior to
the time it is actually needed. The prefetch instruction must be integrated as part of the
instruction set and the appropriate hardware must exist to execute the prefetch
instruction.

For example, assume the compiler is progressing sequentially through a segment of
code. The compiler can make the assumption that this sequence will continue beyond
the range of addresses available in the on-chip cache and issue a prefetch instruction that
fetches the next block of instructions in the sequence and places them in the secondary
cache. Therefore, when the processor requires the next sequence, the block of
instructions exists in the secondary cache or a special instruction buffer as opposed to

Blocking Cache — operat ions are performed ser ia l ly

A1 - - - - - - - - D1 D1D1D1A2 - - - - - - - - D2D2D2D2

Address Cache is Blocked Data Address Cache is Blocked Data

Latency 1 Latency 2

Non-blocking Cache — operat ions are over lapped

A1 - - D1D1 D2D2D2D2

Address Cache is not blocked Data Data

Latency 2

A2 - - - - - D1D1

Latency 1

R10000™ Processor Architecture

Origin™ Servers Technical Report 61

main memory and can be fetched by the processor at a much faster rate. If for some
reason the block of data is not needed, the area in the secondary cache or the buffer is
simply overwritten with other data.

Prefetching allows the compiler to anticipate the need for a given block and place it as
close to the CPU as possible.

3.3 Data Dependency

Two common techniques are used to reduce the negative performance impact of data
dependencies. Each of these is discussed below.

3.3.1 Register Renaming

Register renaming distinguishes between logical registers, which are referenced within
instruction fields, and physical registers, which are located in the hardware register file.
Logical registers are dynamically mapped into physical register numbers using mapping
tables that are updated after each instruction is decoded. Each new result is written into
a new physical register. However, the previous contents of each logical register are
saved and can be restored in case their instruction must be aborted following an
exception or an incorrect branch prediction.

As the processor executes instructions, myriad temporary register results are generated.
These temporary values are stored in register files along with permanent values. The
temporary values become new permanent values when the corresponding instructions
graduate. An instruction graduates when all previous instructions have been
successfully completed.

Register renaming simplifies data dependency checks. In a machine that can execute
instructions out of order, logical register numbers can become ambiguous as the same
register may be assigned a succession of different values. But because physical register
numbers uniquely identify each result, dependency checking becomes unambiguous.
Section 3.7 on page 65 discusses how the R10000 microprocessor implements register
renaming.

3.3.2 Out-of-Order Execution

In a typical pipelined processor, which executes instructionsin order, each instruction
depends on the previous instruction, which produced its operands. Execution cannot
begin until the operands become valid. If operands are invalid, the pipeline stalls until
those operands become valid. Because instructions executein order, stalls delay
subsequent instructions.

In anin-ordersuperscalar machine where multiple instructions are fetched each cycle,
several consecutive instructions can begin execution simultaneously if all corresponding
operands are valid. However, the processor stalls at any instruction whose operands are
not valid.

R10000™ Processor Architecture

62 Origin™ Servers Technical Report

In out-of-order superscalar machines, each instruction can begin execution when its
operands become available, despite the original instruction sequence. The hardware
effectively rearranges instructions to keep the various execution units busy. This process
is called dynamic issuing. Section 3.7.1 on page 66 discusses the out-of-order
implementation used in the R10000 microprocessor.

3.4 Branch Prediction

Branches interrupt the pipeline flow. Therefore, branch prediction schemes are needed
to minimize the number of interruptions. Branches occur frequently, averaging about
one out of every six instructions. In superscalar architectures where more than one
instruction at a time is fetched, branch prediction becomes increasingly important. For
example, in a four-way superscalar architecture, where four instructions per cycle are
fetched, a branch instruction can be encountered every other clock.

Most branch prediction schemes use algorithms that keep track of how a conditional
branch instruction behaved the last time it was executed. For example, if the branch
history circuit shows that the branch was taken the last time the instruction was
executed, the assumption could be made that it will be taken again. A hardware
implementation of this assumption would mean that the program would vector to the
new target address and that all subsequent instruction fetches would occur at the new
address. The pipeline now contains a conditional branch instruction fetched from some
address, and numerous instructions fetched afterward from some other address.
Therefore, all instructions fetched between the time the branch instruction is fetched
and the time it is executed are said to be speculative. That is, it is not known at the time
they are fetched whether or not they will be completed. If the branch was predicted
incorrectly, the instructions in the pipeline must be aborted.

Many architectures implement abranch stack, which saves alternate addresses. If the
branch is predicted to be not-taken, the address of the actual branch instruction is saved.
If the branch is predicted to be taken, the address immediately following the branch
instruction is saved. Section 3.5.4 on page 64 discusses the branch mechanism of the
R10000 microprocessor.

3.5 R10000 Product Overview

The R10000 microprocessor implements many of the techniques mentioned above. This
section discusses some of these features. Figure 3-5 shows a block diagram of the
R10000 microprocessor.

R10000™ Processor Architecture

Origin™ Servers Technical Report 63

Figure 3-5 R10000 Processor Block Diagram

3.5.1 Primary Data Cache

The primary data cache of the R10000 microprocessor is 32KB in size and is arranged
as two identical 16KB banks. The cache istwo-way interleaved. Each of the two banks
is two-way set associative. Cache line size is 32 bytes.

The data cache isvirtually indexed andphysically tagged. The virtual indexing allows
the cache to be indexed in the same clock in which the virtual address is generated.
However, the cache is physically tagged in order to maintain coherency with the
secondary cache.

System Interface Secondary Cache Ct l r

32KB
Data Cache

2-way Set Associative
2 Banks

128-bit refill or writeback

64-bit load or store

32KB
Instruct ion Cache

2-way Set Associative

Unaligned access

128-bit refill

Four 32-bit instr. fetch

2 R10000 microprocessors

Queue
Integer ALU 1

Queue
Address

Queue
Flt.Pt.

ALU 2

Adder

Multiplier

Adr.Calc.

TLB

Secondary Cache

Synchronous Static RAM

128+9

26+7

Secondary Cache

19+way SC Address

Tag

Data

Addr Addr

16-word blocks
8-word blocks

R10000
S

ys
te

m
 B

u
s:

 6
4

-b
it

d
a

ta
,
8

-b
it

ch
e

ck
,
1

2
-b

it
co

m
m

a
n

d

R
e

st
 o

f
W

o
rl
d

Switch (512KB to 16 MB)

(4MB cache requires
ten 256KBx18-bit RAM chips)

may be directly connected

E
x

te
rn

a
l

A
g

e
n

t
o

r
C

lu
s

te
r

C
o

n
tr

o
ll

e
r

R
eg

is
te

rs
64

 F
lt.

P
t.R
eg

is
te

r
M

ap
pi

ng
In

st
ru

ct
io

n
D

ec
od

e

R
eg

is
te

rs
64

 In
te

ge
r

B
ra

nc
h

U
ni

t
C

lo
ck

s

R10000™ Processor Architecture

64 Origin™ Servers Technical Report

3.5.2 Secondary Data Cache

The secondary cache interface of the R10000 microprocessor provides a 128-bit data
bus which in the Origin architecture operates at a ratio of two-thirds the CPU speed.
Thus, for a 195MHz CPU, the peak data transfer rate is 2.08GB per second. All the
standard Synchronous Static RAM interface signals are generated by the processor. No
external interface circuitry is required. In the Origin products, supported cache sizes are
1MB paired with the 180MHz CPU and 4MB paired with the 195MHz CPU. Secondary
cache line size is programmable at either 64 bytes or 128 bytes.

3.5.3 Instruction Cache

The instruction cache is 32KB and is two-way set associative. Instructions are partially
decoded before being placed in the instruction cache. Four extra bits are appended to
each instruction to identify the execution unit to which the instruction will be
dispatched. The instruction cache line size is 64 bytes.

3.5.4 Branch Prediction

The branch unit of the R10000 microprocessor can decode and execute one branch
instruction per cycle. Since each branch is followed by a delay slot, a maximum of two
branch instructions can be fetched simultaneously, but only the earlier one will be
decoded in a given cycle.

A branch bit is appended to each instruction during instruction decode. These bits are
used to locate branch instructions in the instruction fetch pipeline.

The path a branch will take is predicted using abranch history RAM. This two-bit RAM
keeps track of how often each particular branch was taken in the past. The two-bit code
is updated whenever a final branch decision is made.

Any instruction fetched after a branch instruction is speculative, meaning that it is not
known at the time these instructions are fetched whether or not they will be completed.
The R10000 microprocessor allows up to four outstanding branch predictions, which
can be resolved in any order.

Special on-chipbranch stack circuitry contains an entry for each branch instruction
being speculatively executed. Each entry contains the information needed to restore the
processor’s state if the speculative branch is predicted incorrectly. The branch stack
allows the processor to restore the pipeline quickly and efficiently when a branch
misprediction occurs.

R10000™ Processor Architecture

Origin™ Servers Technical Report 65

3.6 Queueing Structures

The R10000 microprocessor contains three instruction queues. These queues
dynamically issue instructions to the various execution units. Each queue uses
instruction tags to track instructions in each execution pipeline stage. Each queue
performs dynamic scheduling and can determine when the operands that each
instruction needs are available. In addition, the queues determine the execution order
based on the availability of the corresponding execution units. When the resources
become available, the queue releases the instruction to the appropriate execution unit.

3.6.1 Integer Queue

The integer queue contains 16 entries and issues instructions to the two integer
arithmetic logic units. Integer instructions are written into empty queue entries and up to
four entries may be written each cycle. Integer instructions remain in the queue until
being issued to an ALU.

3.6.2 Floating-Point Queue

Thefloating-point queue contains 16 entries and issues instructions to the floating-point
adder and floating-point multiplier execution units. Floating-point instructions are
written into empty queue entries and up to four entries may be written each cycle.
Instructions remain in the queue until being issued to an execution unit. The floating-
point queue also contains multiple-pass sequencing logic for instructions such as the
multiply-add. This instruction is dispatched first to the multiply unit, then passed
directly to the adder unit.

3.6.3 Address Queue

The address queue issues instructions to the Load-Store unit and contains 16 entries.
The queue is organized as a circular FIFO (first-in, first-out) buffer. Instructions can be
issued in any order, but they must be written to or removed from the queue in sequential
order. Up to four instructions can be written every cycle. The FIFO maintains the
program´s original instruction sequence so that memory address dependencies may be
computed easily.

An issued instruction may fail to complete because of a memory dependency, a cache
miss, or a resource conflict. In these cases the address queue must reissue the instruction
until it is completed.

3.7 Register Renaming

Dependencies between instructions can degrade the overall performance of the
processor. Register renaming is a technique used to determine these dependencies
between instructions and provide for precise exception handling. When a register is
renamed, the logical registers that are referenced in an instruction are mapped to
physical registers using a mapping table. A logical register is mapped to a new physical
register whenever it is the destination of an instruction. Hence when an instruction puts

R10000™ Processor Architecture

66 Origin™ Servers Technical Report

a new value in a logical register, that logical register is renamed to use the new physical
register. However, the previous value remains in the old physical register. Saving the old
register value allows for precise exception handling.

While each instruction is renamed, its logical register numbers are compared to
determine the dependencies between the four instructions being decoded during the
same cycle.

3.7.1 Mapping Tables

The instruction mapping scheme implemented in the R10000 microprocessor consists
of a mapping table, an active list, and a free list. Separate mapping tables and free lists
are provided for integer and floating-point instructions. To maintain sequential ordering
of instructions, only one active list contains both integer and floating-point instructions.

The R10000 microprocessor contains 64 physical registers. At any given time each
physical register value is contained within one of these lists. Figure 3-6 on page 66
shows a block diagram of the integer instruction mapping scheme.

Instructions are fetched from the instruction cache and placed in the mapping table
shown in Figure 3-6. At any given time, each of the 64 physical registers is located in
one of these three blocks.

Figure 3-6 Integer Instruction Mapping Scheme

The active list maintains a listing of all 32 instructions in the pipeline at any given time.
This list is always in order. The instructions in the queues can be executed out of order,
but before the value can be stored as final, the result must be stored in the order
determined by the active list. Once the value is stored it becomes obsolete and is no
longer active. The logical destination can then be returned to the free list.

Integer Mapping Table

Active List

Free List

From Instruction Cache

Old Physical
Destination

Instruction has
Graduated

To
Queues

(Four Instructions)

R10000™ Processor Architecture

Origin™ Servers Technical Report 67

Each instruction can be uniquely identified by its location within the active list. A 5-bit
value called theinstruction’s tag accompanies each instruction and allows it to be easily
located within the 32-instruction active list so that it can be marked as done when the
instruction graduates.

When a value is taken from the free list it is passed to the mapping table and the
mapping table is updated. The register value now contains the current value of an
operand. The old value from the mapping table is then placed on the active list. The
value remains on the active list until the instruction graduates, meaning that it has been
completed in program order. An instruction can graduate only after it and all previous
instructions have been successfully completed. Once an instruction has graduated,
previous values are lost.

The R10000 microprocessor contains 64 physical registers and 32 logical registers. The
active list contains a maximum of 32 values. The free list also has a maximum of 32
values. If the active list is full there could be 32 committed values and 32 temporary
values, hence the need for 64 physical registers.

3.8 Execution Units

The R10000 microprocessor contains five execution units that operate independently of
one another. There are two integer arithmetic logic units (ALU), two primary floating-
point units, and two secondary floating-point units that handle long-latency instructions
such asdivide andsquare root.

3.8.1 Integer ALUs

There are two integer ALUs in the R10000 microprocessor: ALU1 and ALU2. Integer
ALU operations, with the exception of the multiply and divide operations, execute with
a one-cycle latency and a one-cycle repeat rate.

Both ALUs perform standard add, subtract, and logical operations. These operations
complete in one cycle. ALU1 handles all branch and shift instructions, while ALU2
handles all multiply and divide operations using iterative algorithms. Integer multiply
and divide instructions place their results in theEntryHi andEntryLo registers.

During multiply operations other single-cycle instructions can be executed within
ALU2 while the multiplier is busy. However, once the multiplier has finished, ALU2 is
busy for two cycles while the result is stored in two registers. For divide operations that
have extra-long latencies, ALU2 is busy for the duration of the operation.

Integer multiply operations generate a double-precision product. For single-precision
operations the result is sign-extended to 64 bits before being placed in the EntryHi and
EntryLo registers. Double-precision latencies are approximately twice that of single
precision. Refer to Table 3-1, “Latency and Repeat Rates for Integer and Floating-point
Units,” on page 68.

R10000™ Processor Architecture

68 Origin™ Servers Technical Report

3.8.2 Floating-Point Units

The R10000 microprocessor contains two primary floating-point units. The adder unit
handles add operations and the multiply unit handles multiply operations. In addition,
two secondary floating-point units exist that handle long-latency operations such as
divide and square root.

Addition, subtraction, and conversion instructions have a two-cycle latency and a one-
cycle repeat rate and are handled within the adder unit. Instructions that convert integer
values to single-precision floating-point values have a four-cycle latency, as they must
pass through the adder twice. The adder is busy during the second cycle after the
instruction is issued.

Table 3-1 Latency and Repeat Rates for Integer and Floating-point Units

Instruction Latency Repeat Rate

Integer Add, Subtract, Logical Operations, Branches 1 1

Integer Load/Store (primary cache hit) 2 1

Integer Multiply (single precision) 5 (Lo)–6 (Hi) 6

Integer Multiply (double precision) 9 (Lo)–10 (Hi) 10

Integer Divide (single precision) 34 (Lo)–35 (Hi) 35

Integer Divide (double precision) 66 (Lo)–67 (Hi) 67

Integer to Floating-Point conversion (single
precision)

4 1

Floating-Point Add, Subtract, Conversion, Logical Ooperations 2 1

Floating-Point Load/Store 3 1

Floating-Point Multiply (double precision) 2 1

Floating-Point Multiply-Add 2/4 1

Floating-Point Divide (single precision) 12 14

Floating-Point Divide (double precision) 19 21

Floating-Point Square Root (single precision) 18 20

Floating-Point Square Root (double precision) 33 35

Floating-Point Reciprocal Square Root (single
precision)

30 20

Floating-Point Reciprocal Square Root (double
precision)

52 35

Integer Add, Subtract, Logical Operations, Branches 1 1

Integer Load/Store (primary cache hit) 2 1

Integer Multiply (single precision) 5 (Lo)–6 (Hi) 6

Integer Multiply (double precision) 9 (Lo)–10 (Hi) 10

R10000™ Processor Architecture

Origin™ Servers Technical Report 69

All floating-point multiply operations execute with a two-cycle latency and a one-cycle
repeat rate and are handled within the multiplier unit. The multiplier performs multiply
operations. The floating-point divide and square root units perform calculations using
iterative algorithms. These units are not pipelined and cannot begin another operation
until the current operation is completed. Thus, the repeat rate approximately equals the
latency. The ports of the multiplier are shared with the divide and square root units. A
cycle is lost at the beginning of the operation (to fetch the operand) and at the end (to
store the result).

The floating-point multiply-add operation, which occurs frequently, is computed using
separate multiply and add operations. The multiply-add instruction (MADD) has a four-
cycle latency and a one-cycle repeat rate. The combined instruction improves
performance by eliminating the fetching and decoding of an extra instruction.

The divide and square root units use separate circuitry and can be operated
simultaneously. However, the floating-point queue cannot issue both instructions during
the same cycle.

3.9 Load/Store Units and the TLB

Load/Store units consist of the address queue, address calculation unit, translation
lookaside buffer (TLB), address stack, store buffer, and primary data cache. Load/Store
units perform load, store, prefetch, and cache instructions.

All load or store instructions begin with a three-cycle sequence that issues the
instruction, calculates its virtual address, and translates the virtual address to the
physical address. The address is translated only once during the operation. The data
cache is accessed and the required data transfer is completed, provided there was a
primary data cache hit.

If there is a cache miss, or if the necessary shared register ports are busy, the data cache
and data cache tag access must be repeated after the data is obtained from either the
secondary cache or the main memory.

The TLB contains 64 entries and translates virtual addresses to physical addresses. The
virtual address can originate from either the address calculation unit or the program
counter (PC).

With the IRIX operating system, multiple page sizes are supported. By using large page
sizes the processes can reduce TLB miss overhead and significantly increase
performance. All the page sizes supported by the R10000 processor (16K, 64K, 256K,
1MB, 4MB, 16MB) are supported.

R10000™ Processor Architecture

70 Origin™ Servers Technical Report

3.9.1 Secondary Cache Interface

Secondary cache support for the R10000 microprocessor is provided by an internal
secondary cache controller with a dedicated secondary cache port. A dedicated 128-bit
bus transfers data yielding a maximum secondary cache data transfer rate of 3.2GB per
second. The R10000 microprocessor also provides a 64-bit system interface data bus.

The secondary cache is implemented as two-way set associative. Maximum cache size
is 16MB. Minimum cache size is 512KB. Transfer width is 128 bits, or (4) 32-bit words.
Consecutive cycles are used to transfer larger blocks of data as shown below.

• Four-word accesses (128 bits) are used for the CACHE instruction.

• Eight-word accesses (256 bits) are used for primary data cache refills and write-
backs.

• 16-word accesses (512 bits) are used for primary instruction cache refills; SCache
refills and write-backs (if SCache line size is selected to be 16 words).

• 32-word accesses (1024 bits) are used for secondary cache refills and write-backs (if
SCache line size is set to 32 words).

3.9.2 System Interface

The system interface of the R10000 microprocessor provides a gateway between the
R10000 and its associated secondary cache, and the rest of the computer system. The
system interface operates at the frequency ofSysClk being supplied to the processor.
The programmability of the system interface allows for clock speeds of 200, 133, 100,
80, 67, 57, and 50MHz. All system interface outputs, as well as all inputs, are clocked
on the rising edge ofSysClk, allowing the system interface to run at the highest possible
clock frequency.

In most microprocessor systems only one system transaction can occur at any given
time. The R10000 microprocessor supports a split-level bus transaction protocol. Split-
transaction allows additional processor and external requests to be issued while waiting
for a previous response. A maximum of four outstanding transactions are supported at
any given time.

