

Abstract

.

The Origin System from Silicon Graphics pushed the com-
plexity limits of ASIC design to levels previously only seen
in full custom microprocessors. We describe the methodol-
ogy used to implement and verify this ccNUMA multipro-
cessor system. A formal specification, consisting of a
detailed, machine readable description of the ccNUMA
cache coherence protocol was the corner stone used to
manage the complexity of the design. This specification
was formally verified and used to automate logic verifica-
tion. We used a hierarchical approach at all levels to at-
tack the design and verification. We made design decisions
to ease verification without compromising system perfor-
mance. The completion of this system, running at speed,
with no bugs in the cache coherence protocol, validates
this methodology.

1 Introduction

We describe the methodology that was used to implement
and verify the Silicon Graphics Origin 2000, a cache-co-
herent non-uniform access (ccNUMA) multiprocessor sys-
tem. The Origin 2000 directory-based shared memory

machine [4] shown in Figure 1 consists of nodes of one or
two processors, physical memory, directory memory, a
node controller Hub, IO Xbar interconnect, IO devices,
and a scalable interconnect connecting 2-512 different
nodes. The Hub chip is composed of a Crossbar (XB),
Processor Interface (PI), Network Interface (NI), IO Inter-
face (II) and a Memory/Directory controller (MD).

The single largest difference between previous generation
SGI multiprocessor systems and the Origin 2000 is the
ccNUMA architecture. Its cache coherency protocol is in-
validation based, and together with the processor [6], sup-
ports a sequentially consistent memory model [7]. In order
to be independent of a specific network topology, the pro-
tocol does not rely on network ordering. This makes verifi-
cation more difficult by an order of magnitude, as the
number of corner cases goes up dramatically. For further
detail on the cache coherence protocol, refer to [2, 4].

Implemented in the Hub ASIC, the coherence protocol and
support hardware represent the most complex system
ASIC designed at Silicon Graphics to date. The design
was realized in a five-metal layer, 900 thousand gate stan-
dard cell chip running at 100 MHz. The physical design
and timing methodologies stressed the limits of available
tools.

This paper concentrates on the verification and physical
design methodologies of the Hub ASIC.

The paper is organized as follows. Section 2 describes the
formal verification of the coherence protocol. Section 3
describes the simulation methodology for unit and system
verification. Section 4 discusses the physical design and
timing methodologies.

2 Formal specification analysis/verification

The Origin 2000 system is highly distributed and supports
10000’s of concurrent memory operations. The cache co-
herence protocol is therefore inherently complex. It was
therefore of crucial importance to formally analyze its cor-
rectness. The formal analysis was extremely successful. It
found numerous problems that would have been extremely
difficult to find with conventional simulation techniques.
This included a case where an 18 step sequence of mes-
sages led to loss of cache coherency!

We chose

smv

 [3] to formally verify the protocol specifi-
cations. There are several reasons for this choice (see [1,2]
for more details). First,

smv

 has been successfully used to
verify the specifications of other cache coherence proto-
cols. Another reason is that source code is available for the
tool, in case any problems are encountered. Finally, we
chose

smv

 because it can be integrated with a conventional

Figure 1 Origin block diagram

Scalable Interconnect Network

Mem
&

Dir

Proc A Proc B

IO
Xbar

Hub
Chip

Node 0

IO Ctrls

Node
1

Node
511

Origin System Design Methodology and Experience: 1M-gate ASICs and Beyond

Ásgeir Th. Eiríksson, John Keen, Alex Silbey, Swami Venkataraman, Michael Woodacre
Silicon Graphics Inc.,
Mountain View, CA

project design flow; an important consideration from our
industry perspective.

We employ top-down methods to maximize the benefits of
formal verification. An overview of the formal analysis
workflow is shown in Figure 2. The input to the analysis is
a cache coherence protocol specification.

Figure 2 formal analysis workflow

The

smv

 model is derived from the design specification.
Temporal abstraction is used to minimize the granularity
of the time scale, and functional dependency analysis is
used to eliminate as many state variables as possible. Fi-
nally, we selectively refine the

smv

 model, using the RTL
implementation. We proceed in this fashion in order to in-
crease the computational efficiency of model checking,
and to avoid the state explosion problem [1,2].

A high-level protocol specification consists of a collection
of state machine tables, that determine the response to in-
coming messages in terms of state changes, outputs, and
outgoing messages. The tables serve as input to a perfor-
mance simulation, formal verification with

smv

, verilog
RTL state machine generation, simulation table sweeps
(see section 3.3), and the protocol document.

During the early phases of the project, protocol design al-
ternatives were evaluated using a performance simulator.
After performance evaluation trade-off simulations were
completed, the protocol went through numerous revisions.
The three primary driving forces behind the changes are
the following: operating system (OS) requirements, RTL
synthesis timing issues, and protocol problems, uncovered
with the formal analysis.

There was exactly one accurate, always up to date, ma-
chine readable protocol specification. Having one source
for the specification had several important benefits. The
first was that the different tools were always working with

the same version of the protocol. Another was that it was
possible to verify any design changes, e.g. due to RTL tim-
ing considerations, with the formal verification tool. Final-
ly, once formal verification found a problem in the
protocol, and

smv

 verified the proposed fix, the revised
version of the protocol was immediately available to the
RTL simulation tools.

The goal was to verify the following properties of the
high-level specifications: deadlock-free, all coherent read
& write requests receive the correct response, there are
never unsolicited responses, and no violation of the safety
invariants.

If for performance reasons the protocol was implemented
with one-hot encoding, we also verified that there is al-
ways at most one row activated in a table. It is also impor-
tant to check the converse condition, i.e. that each row is
activated for some state of the protocol.

The following four types of safety properties are verified:
expected state machine input conditions, protocol message
invariants, protocol state invariants, and a special case of
deadlock.

A protocol message invariant, for example, is the property
of the cache coherence protocol that a particular processor
can only have at most one outstanding request targeting a
particular cache line.

A protocol state invariant, for example, is the property that
if a particular processor has an exclusive cached copy of a
cache line, then no other processor or the I/O merge cache
can have a copy of the same cache line.

The important result of the formal analysis is that no pro-
tocol problems have been found since the formal analysis
was completed.

3 Implementation verification

While formal verification played a crucial role in our veri-
fication strategy, traditional simulation-based verification
remained an essential activity. This section summarizes
our simulation strategy and experiences.

We intentionally designed the Hub chip so as to facilitate
the verification effort, and we developed a simulation envi-
ronment in which we could easily write and execute a very
large number of tests. We ran simulations on individual
modules within the Hub, as well as on more highly inte-
grated configurations. The following subsections will
elaborate on these themes.

3.1 Unit verification

Divide and conquer was the basic approach we took to
verify the Hub chip. As the design neatly partitioned itself
into five major units- PI, MD, NI, II and a centralized
XBar (XB), which passes the messages between the units,

OSissues

verilog
protocol fsmsmv

protocol fsm

specification
document

verilog2smv

system model

smv analysis

BDD
issues

equivalence
check

OS
design

performance
simulation

smv

translationtranslation

N
Y

correct

Modify

Y

N

optimal

Abstract
Specification

N

Y
merge

timingissues

Page

 3

we formed our verification strategy based on the special
characteristics of each unit. We created a strategy to verify
each of the units through directed diagnostics and with au-
tomated table sweep diags. Our goal was to find and fix all
the unit level bugs before we moved full steam ahead on
the full chip system simulation.

3.1.1 Stubs

To achieve our goal of finding bugs in the unit level, we
developed several stubs to make the verification efforts ef-
fective and semi-automatic, and so that we could generate
some directed random diags easily. Some of the stubs we
developed:

●

For the processor interface, we wrote a R10000 sys-
tem interface emulation stub which adheres to the
SysAD protocol [6].

●

We created a stub to drive the Xbar side of each unit.
Basically this stub, core vector generation (CVG), can
generate any kind of SN0 protocol messages to be
destined to a specified unit. This stub also took advan-
tage of the fact that each of the units interfaced to the
Xbar using a set of input and output request and reply
FIFOs in a very uniform way. We were able to replace
the verilog model for any unit with this CVG stub to
send any requests or replies to the unit(s) under test.

●

The network interface needed a stub to drive the scal-
able interconnect network.

●

The IO Interface connects to the outside world using
an XIO bus and so we wrote a stub to emulate the
XIO protocol.

All these stubs were written with higher level task calls,
which can be called from the diags directly to make the
diag writing simple, readable yet quite powerful.

3.1.2 Directed diagnostics

Most of the directed diags were written in verilog using
these above stubs and are made to be self checking. The
diags then were compiled into the model and so can be run
at anytime using the runtime command line options. Since
these diags were written in verilog they could take full ad-
vantage of verilog constructs like wait, event and #delays
etc.

3.1.3 Table sweeps

We needed to verify that each unit, treated as a black box,
would correctly generate all proper transaction responses
regardless of any interaction with other transactions. We
realized that it would take an inordinate amount of verifi-
cation effort to come up with directed diags to cover all the
messages handled by each unit and the possible interac-
tions of these messages. Also, the fact that the Hub chip
implements cache coherency in hardware through a set of
protocol tables built in each of the units led us to this new

way of verifying these individual tables through a table
driven method.

Formal verification methods were used to verify the higher
level specification of the protocol table in each of the units
and so based on this we could derive a master verilog table
to be compared against the tables implemented in hard-
ware in each of the units. The master table specifies in de-
tail what should be the expected state transitions and the
output messages, if any, for a given set of input conditions.
So the first task of this program is to “walk” every line of
the table by setting up initial states and then “hit” it with
an input condition and check and make sure that the hard-
ware implementation of the table behaves as expected. An-
other purpose of this program is to “sweep” multiple
transactions to hit various lines of the table and to verify
that the unit behaves as specified in the master table in all
conditions.

The implementation of this idea was carried out differently
for each of the units. The straight forward one being the
MD, which only responds to requests coming from the
Xbar side of the input queue. In contrast, the PI & II need-
ed to service the requests coming from R10000 and XIO
devices respectively, in addition to the ones from their in-
put Xbar queue. This introduced additional complexity, as
these units needed some coherency request buffers (CRBs)
built into them to keep track of the conflicting coherent
traffic in these units. Some of the units gave back door ac-
cess to setup the initial state of the CRB or Directory states
and this was quite useful to achieve the objective to “walk”
and hit every line specified in the table. For those units
which didn’t provide back door access the initial condi-
tions were set up by using a set of sequences and testing
for the expected state at each step of the sequences. For the
PI, table sweep was carried out as a set of streams running
in parallel with each of the streams consisting of a set of
sequences. The number of streams which can run in paral-
lel was limited by the number of outstanding reads sup-
ported by the processor to the external agent. For the MD,
it was carried out by sweeping all different types of re-
quests against each single type of request. The scope of
this was limited by the number of transactions which can
be handled in parallel by MD. For II, this was carried out
as a set of directed diags running in parallel each targeting
different sets of lines in the II protocol table.

On the whole this table sweep verification proved to be
quite successful as we could automate most of this using
some sets of perl scripts and also made it easier to run
sweeps targeting different lines of the table by modifying
some command line arguments.

3.1.4 Formal verification of unit sub-blocks

As a part of unit verification, we also formally verified
several sub-blocks of units where we felt the directed diag-
nostic coverage was not sufficient. This included some ar-
biters, fifos and credit size management FSMs.

3.2 Diagnostic environment

We wrote our directed tests for the II module in a high-lev-
el language which we specified and implemented.

Other options we considered were to write our tests direct-
ly in Verilog or in some language similar to Verilog for
which a convenient macro expansion tool already existed;
either way, we would generate Verilog code for compila-
tion with the RTL.

The high-level language provided several advantages over
the other options:

●

Ease of writing and maintaining tests. The syntax and
semantics were more closely aligned to the conceptu-
al level at which we wished to express our tests.

●

Portability. The same source code could be executed
in two different ways: compilation or interpretation.

Our language is intended to test RTL whose functionality
can be described in terms of packets sent to or received
from it. The language provides various flavors of two basic
commands: *_inject and *_expect. These commands are
used to send packets to and receive packets from the RTL,
respectively. The * is replaced by specification of a partic-
ular stub in the configuration. For each *_inject or
*_expect command, the user must specify the contents of
the fields of the packet; the definition of what fields com-
prise a packet depends on the particular stub to which the
command applies.

To allow for concurrency amongst events, the language
supports optional “NAME” and “AFTER” directives
which can be specified with commands. The NAME direc-
tive attaches a specific name to a particular command. If a
command has an AFTER directive specified for it, then
this directive indicates the commands whose completion
must precede the execution of the command; these prereq-
uisite commands are denoted by listing their names.

The following example illustrates our language:

xt_inject name=xt_iw1 {

TNUM=6; TYPE=WR_RQWRP; SIZE=DW;

...

other field values

 ...

ADDR=0x3D_0004_0000; DATA=0x3_0004; };

xt_expect name=xt_ew1 {

TNUM=6; TYPE=WR_RSP; SIZE=DW;

...

other field values

 ... };

xt_inject name=xt_iw2 after [xt_iw1] {

TNUM=7; TYPE=WR_RQWRP; SIZE=DW;

...

other field values

...

ADDR=0x3D_0004_00A8; DATA=0x3_D005; };

xt_expect name=xt_ew2 {

TNUM=7; TYPE=WR_RSP; SIZE=DW;

...

other field values

};

finish after [xt_ew1, xt_ew2];

Figure 3 Test written in diagnostic language

In this example, the xt_inject command named xt_iw2 can
execute immediately after xt_iw1 has completed; it need
not wait for the xt_expect command named xt_ew1 to oc-
cur first. These xt_iw1 and xt_iw2 commands both submit
XIO write requests to the II RTL. The xt_expect com-
mands named xt_ew1 and xt_ew2 specify the respective
responses expected for these requests. The test doesn’t fin-
ish until both xt_ew1 and xt_ew2 have happened.

Originally, we wrote a tool which converted our tests from
their high-level language representation into Verilog suit-
able for compilation with the ASIC RTL. However, we lat-
er decided to discontinue this approach. Instead of
compilation, we opted for interpretation at run-time. We
wrote some C routines that parse and execute our tests,
and we used the Verilog PLI to connect our C code to the
underlying Verilog simulation model. The advantages of
interpreting tests at run-time rather than compiling them
with the RTL are as follows:

●

Faster VCS [11] compilation time (less code to com-
pile).

●

Smaller simulation binary executable.

●

Quicker development for tests (faster iteration time).

●

Ability to run very many tests (sweeps, randoms).

The Hub chip connects to several important communica-
tion channels. For example, the R10000 processors com-
municate with the Hub via the SysAD bus. Likewise, the
Hub and its IO devices communicate via the XIO link. We
wrote monitors which continuously watch traffic on the
SysAD bus and XIO link. If a monitor detects a protocol
violation (e.g., a flow control error), it will report the error.
These monitors helped us to quickly discover inter-chip
communication errors, and provided valuable guidance
about the source of these errors.

To gain some insight into traffic patterns during execution
of a test, we wrote a tool which generates traces. This tool
prints a listing of all packets which travel through the Xbar
module. It writes its output to a file in ASCII format which

Page

 5

we can later analyze. When bugs occurred, these traces
provided valuable information about activity in the system
prior to the time of failure. We also generated complete
signal dump files (VCD files) and examined activity on all
signals using the signalscan [8] tool. The VCD files were
much larger than the Xbar traffic traces and generally cov-
ered much shorter time intervals.

3.3 System simulation

The directed and table sweep diags provided the founda-
tion of the functional verification of the Hub, but as we
were replacing RTL units with CVG’s in a lot of these en-
vironments, there was the need to do full chip simulation
to make sure the units would inter-operate correctly. We
also wanted to make sure the Hub chip could correctly
work in a system of multiple Hub chips and router chips.

A single node system simulation consisted of a Hub chip,
with the processor interface connected to 2 R10000 MIPS
processors, the memory interface having RAVICAD
SDRAM models connected, and the IO interface having a
XIO stub connected. The R10000 MIPS processors were
complete RTL models but were executed as separate co-
simulation processes as they run in a proprietary simula-
tion language to MIPS technologies. We used a socket
based co-simulation package that had been used on previ-
ous generations of systems at SGI.

Stimulus to the system was provided in a number of ways.
Firstly, we would compile programs (C or assembly) and
then load the object files into the SDRAMS and then have
the R10000 MIPS processors come out of reset and start
executing this code (a condensed boot setup and state ini-
tialization was used rather than executing the software re-
quired in a real system). A single node would simulate at 6
cycle/second. These programs would stress the cache co-
herency by performing operations to cause transaction pat-
terns such as massive false sharing of cache lines, or true
sharing. The second stimulus was from the XIO stub
which could start up random DMA sequences to the
SDRAM memory connected to the Hub. The XIO stub se-
quences would be self checking, writing and then reading
back that data (varying the address, size and data pattern
etc.). The processors would also stress the XIO stub with
PIO reads and writes, as well as graphics writes (these
could be block (16 doublewords) writes, or word writes).
Finally, the IO section of the Hub also has a block transfer
engine (BTE) for moving large amounts of data around in
the system (between memory in one node, or from one
node’s memory to another). The BTE could be set running

by the R10000 processors doing PIO writes to control reg-
isters in the Hub.

Once the single node system model was stable, the obvi-
ous thing was to run 2 nodes with the NI’s directly con-
nected - this allowed us to have 4 processors sharing data
covering more arcs in the cache coherency protocol tables.
Obviously with the Hub being a large chip, running 2 full
nodes together would slow things down. We took advan-
tage of the co-simulation package we had developed at
SGI that was originally intended for use connecting to-
gether models running in different simulation languages
and retargeted it so we could partition the verilog model
and have each node simulation running as a separate pro-
cess. The nodes communicated via UNIX sockets with the
Hub’s NI sending and receiving data via the sockets. With
the current SMP machines that SGI manufactures, we
were able to get good scaling of performance by using the
multiple processors provided in the system.

The next step was to run more and more nodes, stepping
up the node count each time we seemed to plateau the bugs
found with the current system size. To manage the com-
plexity of connecting up these large system configurations
we used perl to read a configuration file that specified how
many nodes and routers were in a system and how they
were connected. The perl code would then generate the top
level verilog modules and co-simulation interface code re-
quired to run the large system models. This turned out to
be very flexible and maintainable as we increased the com-
plexity of how we were building and controlling the mod-
els.

The Spider router [9] used in the Origin system is a 6 port-
ed router. So for building systems with more than 6 nodes,
we would need more than 1 router model. We found that
the router RTL model was actually simulating slower than
the Hub RTL model as it had a lot of gates directly instan-
tiated in the RTL to meet timing requirements. In order to
avoid this bottleneck, we built a virtual router that was ac-
tually a piece of PLI code that would take messages from
any number of nodes and place them in queues at the desti-
nation node. This let us remove the router from the large
system simulations and get us back to being restricted on
simulation speed by the Hub chip.

The largest system simulation we ran was a 16 node simu-
lation. This simulation actually consisted of 49 UNIX pro-
cesses that were running together on a 32 processor SGI
Challenge server. These were 16 verilog processes for the
nodes, 32 processes for the 32 R10000 MIPS processors,
and a single parent verilog process that contained the PLI

virtual router for routing data between the nodes. We actu-
ally found a bug with this system model!

3.4 Computer resources

We used a compute farm made up of SGI Challenge
R4400 200/250MHz servers, supplying a total of over 100
CPUs. In order to make use of this compute resource, we
used the LSF queueing tool from Platform Computing
[10].

3.5 Bugs discovered in the lab

Despite our intense efforts to thoroughly verify the Hub
using formal methods and simulation, a handful of subtle
bugs escaped detection until we ran tests on chips in the
lab. However, we never found any bug in the formally ver-
ified cache coherence protocol.

Of the few bugs found in silicon, the ones that forced us to
revise the silicon occurred when there were a lot of inde-
pendent conditions lined up to create a situation that
caused the chip to function incorrectly. These cases in-
volved hard to setup cases in simulation, where lots of
state had to build up, with exact back-pressure situations,
and precise timings of events. These cases may be best
handled by a more formal approach as there are just not
enough simulation cycles available to build up all the state
required to hit the bug (even when the bugs were known, it
was hard to replicate them in simulation). We did use for-
mal verification successfully to help track down problems
in the RTL that showed up in the lab.

4 Physical design methodology goals

Our goals for timing, floorplanning and layout were sim-
ple:

●

provide quick feedback between design and layout

●

accurately predict critical paths

●

gain early confidence in feasibility of design

While our tool vendors stressed that “deep submicron ef-
fects” would require a vastly different design flow, we
didn’t find that to be true. Instead, we found that data man-
agement is one of the largest problems in designing big
chips.

4.1 Tool flow

Our timing/physical design methodology relied on com-
mercial tools for logic synthesis (Synopsys), floorplanning
(HLD Systems), and timing (Synopsys/Einstimer). Recog-
nizing early that we’d be stressing all of the tools in new
ways, we had 4-way meetings between these vendors and
our ASIC vendor, IBM. We wanted to ensure that these
tools could handle very large designs cooperatively. We
were able to agree on a methodology including Links to

Layout, Standard Delay Format (SDF) back-annotation,
Physical Design Exchange Format (PDEF), and In-Place
Optimization. The multi-hour processing times required
by that methodology proved to be too much of a bottle-
neck. That led us to develop a streamlined methodology
using partial SDF, simple Wire-Load Models (WLM) and
lots of perl scripts.

For the first time in SGI’s history, we were able to base our
sign-off methodology on static timing analysis. We found
it difficult to agree with IBM about which WLMs to use
for the timing analysis. Our inclination was to use the most
accurate ones available, while IBM wanted us to use pessi-
mistic ones. In the end, we agreed to use area-based
WLMs sized according to floorplan estimates.

4.2 Timing and synthesis

Very early in the design phase we decided to take a hierar-
chical approach to timing. We partitioned the logic into
about 20 chiplets with between 20-100 thousand gates.
The chiplets became our floorplanning blocks. We also
recognized that we needed specific timing methodologies
for intra-chiplet and inter-chiplet nets.

The 8224 inter-chiplet nets were treated individually as
early as possible in the design.

●

Timing budget was negotiated and tracked, including
time-of-flight across the large die

●

Wherever possible, outputs were launched out of the
chiplet from a register

●

Special WLM was generated for the static timing
analysis tools, replacing whole-chip vendor-supplied
WLM. This was used before floorplanning, the only
time statistics were applied to inter-chiplet nets.

●

Tool was written to estimate individual wire lengths
based on center-to-center distance between source and
destination chiplets. This was useful as a quick check
on the floorplan.

●

Finally, when ports had been assigned in floorplan-
ning, we extracted SDF for inter-chiplet nets.

The biggest methodology flaw was using the IBM area-
based WLMs in combination with Synopsys’ auto-sizing
library.

Intra-chiplet nets, on the other hand, were treated statisti-
cally all the way through sign-off.

●

Initially we used IBM-supplied area-based WLMs.

●

Next, we used the floorplanner to generate custom
WLMs for each chiplet. This WLM was applied top-
down to each synthesis run inside that chiplet.

Designers used Synopsys for all of the logic under their
control. We had a dedicated chip integration person do
full-chip timing using Einstimer.

Page

 7

4.2.1 Synthesis problems

Our large-chip effort exposed three general problems with
the synthesis tool, all related to the quality of results.

●

We found it difficult to determine and manage the
constraints on the I/Os of the leaf-level modules. It’s
unfortunate that there aren’t any commercial tools to
help maintain constraints and timing budgets.

●

Synopsys had a difficult time trading off gate sizing
and load balancing with IBM’s wide variety of drive
strengths. Designers were dismayed to find unneces-
sary back-to-back inverters on their critical paths.

●

Synopsys’ post-layout optimizations didn’t work. We
ended up writing some simple perl scripts to resize
gates after layout.

Together, these problems led to the overriding problem:
excessive hand-instantiation. Under pressure to meet ag-
gressive tapeout schedules, our designers were forced to
work around many of these problems by manually design-
ing the logic for timing-critical sections of the chip. The
Hub chip was about 30 percent hand-instantiated.

While we did eventually reach our target cycle time, the
hand instantiation was time-consuming, hard to get right
and slowed down the simulator.

4.2.2 Timing problems

In a new flow, it’s important to spend time measuring and
improving the correlation between the tools’ timing esti-
mates. Early Origin 2000 studies showed gross errors be-
tween Synopsys’ and IBM Einstimer’s timing of high-
resistance nets. The errors, in one case as bad as 10X, were
due to limitations in Synopsys’ delay calculator.

Since we were unable to get enhancements for the delay
calculator problem in the time frame of the project, we
agreed to avoid the problem altogether. We limited fanout
of inter-chiplet nets to four and intra-chiplet to sixteen.

4.3 Floorplanning

Floorplanning provided the crucial link between synthesis
and layout. However, we thrashed a lot before we achieved
enough accuracy to feel comfortable with the link.

4.3.1 Floorplanning calibration

We needed accurate, quick links in two directions. First,
feedback to design needed to be well-correlated with lay-
out but not pessimistic. Second, feed-forward to layout
tools had to ensure the correlation.

Pessimistic feedback was immediately rejected by the de-
signers. While it’s easy to reduce layout iterations by mak-
ing draconian WLMs, that forces designers to have to

work too hard to make timing. It also leaves performance
on the table. Optimistic feedback, on the other hand, could
easily result in far too many layout iterations. Designers
would tape out an unrealizable chip, and surprises would
crop up during physical design.

In the end, we calibrated the HLD/Synopsys feedback path
by examining the results of several trial layouts. Path for
path, we compared the Synopsys, HLD and layout-derived
timing. That allowed us to identify and eliminate the larg-
est discrepancies.

We achieved the best correlation by allowing HLD to au-
toplace the drivers and receivers of inter-chiplet nets, then
feeding those choices to the layout tools. By constraining
the layout tools to use these placements, we made sure that
inter-chiplet nets wouldn’t offer any surprises.

We further improved the correlation by preplacing the
components of the most important datapaths. This had the
attractive side benefit of improving routability and com-
pactness. Most importantly, though, it improved the pre-
dictability of the physical design process.

4.3.2 Logical vs. physical hierarchy

One of the difficult project decisions was how to structure
the hierarchy in physical design. Since we were already
overburdened with inventing new flows, we decided to
take the safe route. We decided that the logical and physi-
cal hierarchies would be almost the same.

We felt nervous with our vendors’ assurances that PDEF
would allow us to bridge disparate hierarchies. We also
wanted to achieve quickest possible turnaround between
synthesis and floorplanning.

Keeping logical and physical hierarchies the same meant
that we didn’t need PDEF in the flow. That kept the turn-
around time as short as possible. It also made it easier for
the logic designer to debug problems stemming from the
physical domain.

One unforeseen problem in the link between HLD and
Synopsys involved the SDF for inter-chiplet nets. SDF
stores interconnect information as point-to-point delays
between instance pins. When you read SDF into your tim-
ing tool, it attaches the delay to all the pins. Unfortunately,
we often found that, because of the lengthy loop through
floorplanning, the logical design had changed and no long-
er corresponded with the SDF. Even though the point-to-
point connections were the same, resynthesizing the
blocks invariably changed the instance names. That meant
the SDF sometimes was unable to attach delays to now-
missing instances, and sometimes the delay was attached
to the wrong instance.

This is but one example of the difficult data management
problems we faced on the Origin project. We constantly
struggled with data consistency between logical and phys-
ical design. We created disruption in the design verifica-
tion environment by asking designers to check in updates
for physical design before they could be logically verified.
That broke the “top of trunk” design which a lot of design
verification people were trying to simulate. Towards the
end of the project we gained control over these issues by
mandating well-publicized snapshots of the netlists.

5 Conclusions

The Origin 2000 Hub chip is the largest and most compli-
cated ASIC ever designed at SGI. To successfully and effi-
ciently accomplish the verification and physical design
tasks, we applied the following innovative techniques:

●

Formal verification of the cache coherence protocol
and portions of the Verilog RTL.

●

Table-driven verification of individual modules.

●

Module designs which facilitate verification.

●

Interpretive simulator interface for running tests.

●

Chip designs which facilitate physical design (i.e.,
recognition of the physical effects of logic design).

●

Hierarchical ASIC design methodology.

6 Acknowledgments

In addition to this paper’s authors, the following individu-
als all made substantial contributions to the verification of
the Hub and router chips for the Origin 2000 system: Bob
Alfieri, Pat Conway, Bulent Dervisoglu, Ben Fathi, Martin
Frankel, Dick Hessel, George Kaldani, Yuval Koren, Vi-
ranjit Madan, Todd Massey, Dawn Maxon, Curt McDow-
ell, Ken McMillan, Mike McNamara, Chuck Narad, Peter
Ostrin, Alex Petruncola, Rich Weber, Steve Whitney and
Eric Williams.

Furthermore, the following individuals contributed to the
physical design efforts: Joanne Allen, Stan Bailes, Thom
Derenthal, Dave Harmon, Dave Koller, Ron Nikel, Steve
Padnos, Dave Parry, Rick Paul, Tuan Tran, and Gutrum
Wolski.

References

[1] Asgeir Th. Eiriksson and Ken L. McMillan, Using
formal verification/analysis methods on the critical
path in system design: A case study. In

Proceedings of
Computer Aided Verification Conference

, Liege Bel-
gium, LNCS 939, Springer Verlag, 1995.

[2] Ásgeir Th. Eiríksson, “Integrating Formal Verification
Methods with A Conventional Project Design Flow”,

Proc. 33rd ACM/IEEE Design Automation Conf.,
1995.

[3] K. L. McMillan, “Symbolic Model Checking”, Kluw-
er Academic Publishers, 1993

[4] Jim Laudon, and Dan Lenoski, “System Overview of
the Origin 200/2000 Product Line”, COMPCON ‘97.

[5] Steve Whitney, Ken Jacobsen, et. al., “The SGI Origin
Software Environment and Application Perfor-
mance”, COMPCON ‘97.

[6] R10000 Microprocessor User’s Manual, http://
www.mips.com/products/r10k

[7] S.V.Adve, “Designing Memory Consistency Models
For Shared Memory Multiprocessors”, Ph.D. Thesis,
U of Wisconsin-Madison, 1993.

[8] Signalscan, Design Acceleration, http://www.desig-
nacc.com

[9] Mike Galles, “The SGI SPIDER chip”, Hot Intercon-
nects Symposium IV, 1996.

[10] LSF, Platform Computing, http://www.platform.com

[11] VCS verilog compiler, http://www.chronologic.com

	1 Introduction
	Figure 1 Origin block diagram

	2 Formal specification analysis/verification
	Figure 2 formal analysis workflow

	3 Implementation verification
	3.1 Unit verification
	3.2 Diagnostic environment
	Figure 3 Test written in diagnostic language

	3.3 System simulation
	3.4 Computer resources
	3.5 Bugs discovered in the lab

	4 Physical design methodology goals
	4.1 Tool flow
	4.2 Timing and synthesis
	4.2.1 Synthesis problems
	4.2.2 Timing problems

	4.3 Floorplanning
	4.3.1 Floorplanning calibration
	4.3.2 Logical vs. physical hierarchy

	5 Conclusions
	6 Acknowledgments
	References
	[1] Asgeir Th. Eiriksson and Ken L. McMillan, Usin...
	[2] Ásgeir Th. Eiríksson, “Integrating Formal Veri...
	[3] K. L. McMillan, “Symbolic Model Checking”, Klu...
	[4] Jim Laudon, and Dan Lenoski, “System Overview ...
	[5] Steve Whitney, Ken Jacobsen, et. al., “The SGI...
	[6] R10000 Microprocessor User’s Manual, http:// [...
	[7] S.V.Adve, “Designing Memory Consistency Models...
	[8] Signalscan, Design Acceleration, http://www.de...
	[9] Mike Galles, “The SGI SPIDER chip”, Hot Interc...
	[10] LSF, Platform Computing, http://www.platform....
	[11] VCS verilog compiler, http://www.chronologic....

